Algorithms \& Models of Computation

 CS/ECE 374 B, Spring 2020
Circuit satisfiability and Cook-Levin Theorem

Lecture 24
Friday, May 1, 2020

Recap

NP: languages that have non-deterministic polynomial time algorithms

Recap

NP: languages that have non-deterministic polynomial time algorithms

A language L is NP-Complete iff

- L is in NP
- for every L^{\prime} in $N P, L^{\prime} \leq_{P} L$

Recap

NP: languages that have non-deterministic polynomial time algorithms

A language L is NP-Complete iff

- L is in NP
- for every L^{\prime} in $N P, L^{\prime} \leq_{P} L$
L is NP-Hard if for every L^{\prime} in NP, $L^{\prime} \leq_{P} L$.

Recap

NP: languages that have non-deterministic polynomial time algorithms

A language L is NP-Complete iff

- L is in NP
- for every L^{\prime} in NP, $L^{\prime} \leq_{p} L$
L is NP-Hard if for every L^{\prime} in NP, $L^{\prime} \leq_{P} L$.

Theorem (Cook-Levin)

 SAT is NP-Complete.
Pictorial View

P and NP

Possible scenarios:
(1) $P=N P$.
(2) $P \neq N P$

P and NP

Possible scenarios:
(1) $P=N P$.
(2) $P \neq N P$

Question: Suppose $\mathbf{P} \neq \mathbf{N P}$. Is every problem in NP $\backslash \mathbf{P}$ also NP-Complete?

P and NP

Possible scenarios:
(1) $P=N P$.
(2) $P \neq N P$

Question: Suppose $\mathbf{P} \neq \mathbf{N P}$. Is every problem in NP $\backslash \mathbf{P}$ also NP-Complete?

Theorem (Ladner)
 If $\mathbf{P} \neq \mathbf{N P}$ then there is a problem/language $\boldsymbol{X} \in \mathbf{N P} \backslash \mathbf{P}$ such that X is not NP-Complete.

NP-Complete Problems

Previous lectures:

- 3-SAT
- Independent Set
- Hamiltonian Cycle
- 3-Color

Today:

- Circuit SAT
- SAT

Important: understanding the problems and that they are hard.
Proofs and reductions will be sketchy and mainly to give a flavor

Part I

Circuit SAT

Circuits

Figure 10.1. An And gate, an OR gate, and a Not gate.

Figure 10.2. A boolean circuit. Inputs enter from the left, and the output leaves to the right.

Circuits

Definition

A circuit is a directed acyclic graph with

(1) Input vertices (without incoming edges) labelled with 0, $\mathbf{1}$ or a distinct variable.
(2) Every other vertex is labelled \vee, \wedge or \neg.
(3) Single node output vertex with no outgoing edges.

CSAT: Circuit Satisfaction

Definition (Circuit Satisfaction (CSAT).)

Given a circuit as input, is there an assignment to the input variables that causes the output to get value $\mathbf{1}$?

CSAT: Circuit Satisfaction

Definition (Circuit Satisfaction (CSAT).)

Given a circuit as input, is there an assignment to the input variables that causes the output to get value $\mathbf{1}$?

Claim

CSAT is in NP.

(1) Certificate: Assignment to input variables.
(2) Certifier: Evaluate the value of each gate in a topological sort of DAG and check the output gate value.

Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.
Circuits are a much more powerful (and hence easier) way to express Boolean formulas

Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.

Circuits are a much more powerful (and hence easier) way to express Boolean formulas

However they are equivalent in terms of polynomial-time solvability.

Theorem

SAT $\leq_{P} 3 S A T \leq_{P}$ CSAT.

Theorem

$\mathrm{CSAT} \leq_{P}$ SAT \leq_{p} 3SAT.

Converting a CNF formula into a Circuit

 3 SAT \leq_{p} CSATGiven 3CNF formula $\boldsymbol{\varphi}$ with \boldsymbol{n} variables and \boldsymbol{m} clauses, create a Circuit C.

- Inputs to C are the n boolean variables $x_{1}, x_{2}, \ldots, x_{n}$
- Use NOT gate to generate literal $\neg x_{i}$ for each variable x_{i}
- For each clause ($\ell_{1} \vee \ell_{2} \vee \ell_{3}$) use two OR gates to mimic formula
- Combine the outputs for the clauses using AND gates to obtain the final output

Example

3 SAT \leq_{p} CSAT

$$
\varphi=\left(x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right)
$$

The other direction: CSAT \leq_{p} 3SAT

(1) Now: CSAT \leq_{p} SAT
(2) More "interesting" direction.

Converting a circuit into a CNF formula

Label the nodes

(A) Input circuit

(B) Label the nodes.

Converting a circuit into a CNF formula

 Introduce a variable for each node
(B) Label the nodes.

(C) Introduce var for each node.

Converting a circuit into a CNF formula

Write a sub-formula for each variable that is true if the var is computed correctly.

$x_{k} \quad$ (Demand a sat' assignment!)
$x_{k}=x_{i} \wedge x_{j}$
$x_{j}=x_{g} \wedge x_{h}$
$x_{i}=\neg x_{f}$
$x_{h}=x_{d} \vee x_{e}$
$x_{g}=x_{b} \vee x_{c}$
$x_{f}=x_{a} \wedge x_{b}$
$x_{d}=0$
$x_{a}=1$
(D) Write a sub-formula for each variable that is true if the var is computed correctly.

Reduction: CSAT \leq_{p} SAT

(1) For each gate (vertex) v in the circuit, create a variable x_{v}
(2) Case $\neg: \boldsymbol{v}$ is labeled \neg and has one incoming edge from \boldsymbol{u} (so $\left.x_{v}=\neg x_{u}\right)$. In SAT formula generate, add clauses $\left(x_{u} \vee x_{v}\right)$, $\left(\neg x_{u} \vee \neg x_{v}\right)$. Observe that

$$
x_{v}=\neg x_{u} \text { is true } \Longleftrightarrow \begin{aligned}
& \left(x_{u} \vee x_{v}\right) \\
& \left(\neg x_{u} \vee \neg x_{v}\right)
\end{aligned} \text { both true. }
$$

Reduction: CSAT \leq_{p} SAT

Continued...

(1) Case \vee : So $x_{v}=x_{u} \vee x_{w}$. In SAT formula generated, add clauses $\left(x_{v} \vee \neg x_{u}\right),\left(x_{v} \vee \neg x_{w}\right)$, and $\left(\neg x_{v} \vee x_{u} \vee x_{w}\right)$. Again, observe that

$$
\left(x_{v}=x_{u} \vee x_{w}\right) \text { is true } \Longleftrightarrow \begin{aligned}
& \left(x_{v} \vee \neg x_{u}\right), \\
& \left(x_{v} \vee \neg x_{w}\right), \\
& \left(\neg x_{v} \vee x_{u} \vee x_{w}\right)
\end{aligned} \quad \text { all true. }
$$

Reduction: CSAT \leq_{p} SAT

Continued...

(1) Case \wedge : So $x_{v}=x_{u} \wedge x_{w}$. In SAT formula generated, add clauses $\left(\neg x_{v} \vee x_{u}\right)$, $\left(\neg x_{v} \vee x_{w}\right)$, and $\left(x_{v} \vee \neg x_{u} \vee \neg x_{w}\right)$. Again observe that

$$
x_{v}=x_{u} \wedge x_{w} \text { is true } \Longleftrightarrow \begin{aligned}
& \left(\neg x_{v} \vee x_{u}\right), \\
& \left(\neg x_{v} \vee x_{w}\right), \\
& \left(x_{v} \vee \neg x_{u} \vee \neg x_{w}\right)
\end{aligned} \quad \text { all true. }
$$

Reduction: CSAT \leq_{p} SAT

Continued...

(1) If v is an input gate with a fixed value then we do the following. If $x_{v}=1$ add clause x_{v}. If $x_{v}=0$ add clause $\neg x_{v}$
(2) Add the clause x_{v} where v is the variable for the output gate

Converting a circuit into a CNF formula

Convert each sub-formula to an equivalent CNF formula

x_{k}	x_{k}
$x_{k}=x_{i} \wedge x_{j}$	$\left(\neg x_{k} \vee x_{i}\right) \wedge\left(\neg x_{k} \vee x_{j}\right) \wedge\left(x_{k} \vee \neg x_{i} \vee \neg x_{j}\right)$
$x_{j}=x_{g} \wedge x_{h}$	$\left(\neg x_{j} \vee x_{g}\right) \wedge\left(\neg x_{j} \vee x_{h}\right) \wedge\left(x_{j} \vee \neg x_{g} \vee \neg x_{h}\right)$
$x_{i}=\neg x_{f}$	$\left(x_{i} \vee x_{f}\right) \wedge\left(\neg x_{i} \vee \neg x_{f}\right)$
$x_{h}=x_{d} \vee x_{e}$	$\left(x_{h} \vee \neg x_{d}\right) \wedge\left(x_{h} \vee \neg x_{e}\right) \wedge\left(\neg x_{h} \vee x_{d} \vee x_{e}\right)$
$x_{g}=x_{b} \vee x_{c}$	$\left(x_{g} \vee \neg x_{b}\right) \wedge\left(x_{g} \vee \neg x_{c}\right) \wedge\left(\neg x_{g} \vee x_{b} \vee x_{c}\right)$
$x_{f}=x_{a} \wedge x_{b}$	$\left(\neg x_{f} \vee x_{a}\right) \wedge\left(\neg x_{f} \vee x_{b}\right) \wedge\left(x_{f} \vee \neg x_{a} \vee \neg x_{b}\right)$
$x_{d}=0$	$\neg x_{d}$
$x_{a}=1$	x_{a}

Converting a circuit into a CNF formula

Take the conjunction of all the CNF sub-formulas

Inputs

$$
\begin{aligned}
& x_{k} \wedge\left(\neg x_{k} \vee x_{i}\right) \wedge\left(\neg x_{k} \vee x_{j}\right) \\
& \wedge\left(x_{k} \vee \neg x_{i} \vee \neg x_{j}\right) \wedge\left(\neg x_{j} \vee x_{g}\right) \\
& \wedge\left(\neg x_{j} \vee x_{h}\right) \wedge\left(x_{j} \vee \neg x_{g} \vee \neg x_{h}\right) \\
& \wedge\left(x_{i} \vee x_{f}\right) \wedge\left(\neg x_{i} \vee \neg x_{f}\right) \\
& \wedge\left(x_{h} \vee \neg x_{d}\right) \wedge\left(x_{h} \vee \neg x_{e}\right) \\
& \wedge\left(\neg x_{h} \vee x_{d} \vee x_{e}\right) \wedge\left(x_{g} \vee \neg x_{b}\right) \\
& \wedge\left(x_{g} \vee \neg x_{c}\right) \wedge\left(\neg x_{g} \vee x_{b} \vee x_{c}\right) \\
& \wedge\left(\neg x_{f} \vee x_{a}\right) \wedge\left(\neg x_{f} \vee x_{b}\right) \\
& \wedge\left(x_{f} \vee \neg x_{a} \vee \neg x_{b}\right) \wedge\left(\neg x_{d}\right) \wedge x_{a}
\end{aligned}
$$

We got a CNF formula that is satisfiable if and only if the original circuit is satisfiable.

Correctness of Reduction

Need to show circuit C is satisfiable iff φ_{c} is satisfiable
\Rightarrow Consider a satisfying assignment a for C
(1) Find values of all gates in \boldsymbol{C} under \boldsymbol{a}
(2) Give value of gate \boldsymbol{v} to variable $\boldsymbol{x}_{\boldsymbol{v}}$; call this assignment \boldsymbol{a}^{\prime}
(3) a^{\prime} satisfies φc (exercise)
\Leftarrow Consider a satisfying assignment a for φ_{C}
(1) Let \boldsymbol{a}^{\prime} be the restriction of \boldsymbol{a} to only the input variables
(2) Value of gate \boldsymbol{v} under \boldsymbol{a}^{\prime} is the same as value of $\boldsymbol{x}_{\boldsymbol{v}}$ in \boldsymbol{a}
(3) Thus, \boldsymbol{a}^{\prime} satisfies C

Part II

Proof of Cook-Levin Theorem

Cook-Levin Theorem

Theorem (Cook-Levin)

SAT is NP-Complete.

We have already seen that SAT is in NP.

Need to prove that every language $L \in N P, L \leq_{P}$ SAT

Cook-Levin Theorem

Theorem (Cook-Levin)

SAT is NP-Complete.

We have already seen that SAT is in NP.

Need to prove that every language $L \in N P, L \leq_{P}$ SAT

Difficulty: Infinite number of languages in NP. Must simultaneously show a generic reduction strategy.

High-level Plan

What does it mean that $L \in N P$?
$L \in N P$ implies that there is a non-deterministic TM M and polynomial $\boldsymbol{p}()$ such that

$$
L=\left\{x \in \boldsymbol{\Sigma}^{*} \mid M \text { accepts } x \text { in at most } p(|x|) \text { steps }\right\}
$$

High-level Plan

What does it mean that $L \in N P$?
$L \in N P$ implies that there is a non-deterministic TM M and polynomial $\boldsymbol{p}()$ such that

$$
L=\left\{x \in \boldsymbol{\Sigma}^{*} \mid M \text { accepts } x \text { in at most } p(|x|) \text { steps }\right\}
$$

We will describe a reduction f_{M} that depends on M, p such that:

- f_{M} takes as input a string x and outputs a SAT formula $f_{M}(x)$
- f_{M} runs in time polynomial in $|x|$
- $x \in L$ if and only if $f_{M}(x)$ is satisfiable

Plan continued

$f_{M}(x)$ is satisfiable if and only if $x \in L$
$f_{M}(x)$ is satisfiable if and only if nondeterministic M accepts x in $p(|x|)$ steps

Plan continued

$f_{M}(x)$ is satisfiable if and only if $x \in L$
$f_{M}(x)$ is satisfiable if and only if nondeterministic M accepts x in $p(|x|)$ steps

BIG IDEA

- $f_{M}(x)$ will express " M on input x accepts in $p(|x|)$ steps"
- $f_{M}(x)$ will encode a computation history of M on x
$f_{M}(x)$ will be a carefully constructed CNF formula s.t if we have a satisfying assignment to it, then we will be able to see a complete accepting computation of M on x down to the last detail of where the head is, what transition is chosen, what the tape contents are, at each step.

Tableau of Computation

M runs in time $\boldsymbol{p}(|x|)$ on x. Entire computation of M on x can be represented by a "tableau"

Row \boldsymbol{i} gives contents of all cells at time \boldsymbol{i}
At time $\mathbf{0}$ tape has input \boldsymbol{x} followed by blanks
Each row long enough to hold all cells M might ever have scanned.

Variables of $f_{M}(x)$

Four types of variable to describe computation of M on x

Variables of $f_{M}(x)$

Four types of variable to describe computation of M on x

- $\boldsymbol{T}(\boldsymbol{b}, \boldsymbol{h}, \boldsymbol{i})$: tape cell at position \boldsymbol{h} holds symbol \boldsymbol{b} at time \boldsymbol{i}. $\mathbf{1} \leq \boldsymbol{h} \leq \boldsymbol{p}(|x|), \boldsymbol{b} \in \boldsymbol{\Gamma}, \mathbf{0} \leq \boldsymbol{i} \leq \boldsymbol{p}(|x|)$

Variables of $f_{M}(x)$

Four types of variable to describe computation of M on x

- $\boldsymbol{T}(\boldsymbol{b}, \boldsymbol{h}, \boldsymbol{i})$: tape cell at position \boldsymbol{h} holds symbol \boldsymbol{b} at time \boldsymbol{i}.

$$
\mathbf{1} \leq h \leq p(|x|), b \in \Gamma, 0 \leq i \leq p(|x|)
$$

- $H(h, i)$: read/write head is at position h at time \boldsymbol{i}. $1 \leq h \leq p(|x|), 0 \leq i \leq p(|x|)$

Variables of $f_{M}(x)$

Four types of variable to describe computation of M on x

- $\boldsymbol{T}(\boldsymbol{b}, \boldsymbol{h}, \boldsymbol{i})$: tape cell at position \boldsymbol{h} holds symbol \boldsymbol{b} at time \boldsymbol{i}. $\mathbf{1} \leq \boldsymbol{h} \leq \boldsymbol{p}(|x|), \boldsymbol{b} \in \boldsymbol{\Gamma}, \mathbf{0} \leq \boldsymbol{i} \leq \boldsymbol{p}(|x|)$
- $H(h, i)$: read/write head is at position h at time \boldsymbol{i}. $\mathbf{1} \leq \boldsymbol{h} \leq \boldsymbol{p}(|x|), 0 \leq i \leq p(|x|)$
- $S(\boldsymbol{q}, \boldsymbol{i})$ state of M is \boldsymbol{q} at time $\boldsymbol{i} \boldsymbol{q} \in Q, \mathbf{0} \leq \boldsymbol{i} \leq \boldsymbol{p}(|x|)$

Variables of $f_{M}(x)$

Four types of variable to describe computation of M on x

- $\boldsymbol{T}(\boldsymbol{b}, \boldsymbol{h}, \boldsymbol{i})$: tape cell at position \boldsymbol{h} holds symbol \boldsymbol{b} at time \boldsymbol{i}.

$$
\mathbf{1} \leq h \leq p(|x|), b \in \Gamma, 0 \leq i \leq p(|x|)
$$

- $H(h, i):$ read/write head is at position \boldsymbol{h} at time \boldsymbol{i}.
$\mathbf{1} \leq \boldsymbol{h} \leq \boldsymbol{p}(|x|), \mathbf{0} \leq \boldsymbol{i} \leq \boldsymbol{p}(|x|)$
- $S(\boldsymbol{q}, \boldsymbol{i})$ state of M is \boldsymbol{q} at time $\boldsymbol{i} \boldsymbol{q} \in Q, \mathbf{0} \leq \boldsymbol{i} \leq \boldsymbol{p}(|x|)$
- $I(j, i)$ instruction number j is executed at time \boldsymbol{i}
M is non-deterministic, need to specify transitions in some way.
Number transitions as $1,2, \ldots, \ell$ where j th transition is $<q_{j}, b_{j}, q_{j}^{\prime}, b_{j}^{\prime}, d_{j}>$ indication $\left(q_{j}^{\prime}, b_{j}^{\prime}, d_{j}\right) \in \delta\left(q_{j}, b_{j}\right)$, direction $d_{j} \in\{-1,0,1\}$.

Variables of $f_{M}(x)$

Four types of variable to describe computation of M on x

- $\boldsymbol{T}(\boldsymbol{b}, \boldsymbol{h}, \boldsymbol{i})$: tape cell at position \boldsymbol{h} holds symbol \boldsymbol{b} at time \boldsymbol{i}.

$$
\mathbf{1} \leq h \leq p(|x|), b \in \Gamma, \mathbf{0} \leq i \leq p(|x|)
$$

- $H(h, i)$: read/write head is at position h at time \boldsymbol{i}.

$$
\mathbf{1} \leq h \leq p(|x|), 0 \leq i \leq p(|x|)
$$

- $S(\boldsymbol{q}, \boldsymbol{i})$ state of M is \boldsymbol{q} at time $\boldsymbol{i} \boldsymbol{q} \in \boldsymbol{Q}, \mathbf{0} \leq \boldsymbol{i} \leq \boldsymbol{p}(|x|)$
- $I(j, i)$ instruction number j is executed at time \boldsymbol{i}
M is non-deterministic, need to specify transitions in some way.
Number transitions as $1,2, \ldots, \ell$ where j th transition is $<q_{j}, b_{j}, q_{j}^{\prime}, b_{j}^{\prime}, d_{j}>$ indication $\left(q_{j}^{\prime}, b_{j}^{\prime}, d_{j}\right) \in \delta\left(q_{j}, b_{j}\right)$, direction $d_{j} \in\{-\mathbf{1}, \mathbf{0}, 1\}$.
Number of variables is $O\left(p(|x|)^{2}\right)$ where constant in $O()$ hides dependence on fixed machine M.

Notation

Some abbreviations for ease of notation $\bigwedge_{k=1}^{m} x_{k}$ means $x_{1} \wedge x_{2} \wedge \ldots \wedge x_{m}$
$\bigvee_{k=1}^{m} x_{k}$ means $x_{1} \vee x_{2} \vee \ldots \vee x_{m}$
$\bigoplus\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ is a formula that means exactly one of $x_{1}, x_{2}, \ldots, x_{m}$ is true. Can be converted to CNF form

Clauses of $f_{M}(x)$

$f_{M}(x)$ is the conjunction of 8 clause groups:

$$
f_{M}(x)=\varphi_{1} \wedge \varphi_{2} \wedge \varphi_{3} \wedge \varphi_{4} \wedge \varphi_{5} \wedge \varphi_{6} \wedge \varphi_{7} \wedge \varphi_{8}
$$

where each φ_{i} is a CNF formula. Described in subsequent slides. Property: $f_{M}(x)$ is satisfied iff there is a truth assignment to the variables that simultaneously satisfy $\varphi_{1}, \ldots, \varphi_{8}$.
φ_{1} asserts (is true iff) the variables are set T / F indicating that M starts in state \boldsymbol{q}_{0} at time $\mathbf{0}$ with tape contents containing x followed by blanks.

Let $x=a_{1} a_{2} \ldots a_{n}$
$\varphi_{1}=S\left(q_{0}, 0\right)$ state at time 0 is q_{0}
φ_{1} asserts (is true iff) the variables are set T / F indicating that M starts in state \boldsymbol{q}_{0} at time $\mathbf{0}$ with tape contents containing x followed by blanks.

Let $x=a_{1} a_{2} \ldots a_{n}$
$\varphi_{1}=S\left(q_{0}, 0\right)$ state at time 0 is q_{0}
\bigwedge and
φ_{1} asserts (is true iff) the variables are set T / F indicating that M starts in state \boldsymbol{q}_{0} at time $\mathbf{0}$ with tape contents containing x followed by blanks.

```
Let }x=\mp@subsup{a}{1}{}\mp@subsup{a}{2}{}\ldots...\mp@subsup{a}{n}{
\varphi
\ and
\bigwedge
```

φ_{1} asserts (is true iff) the variables are set T / F indicating that M starts in state \boldsymbol{q}_{0} at time $\mathbf{0}$ with tape contents containing x followed by blanks.

```
Let }x=\mp@subsup{a}{1}{}\mp@subsup{a}{2}{}\ldots...\mp@subsup{a}{n}{
\varphi
\and
\bigwedge
\bigwedge
```

φ_{1} asserts (is true iff) the variables are set T / F indicating that M starts in state \boldsymbol{q}_{0} at time $\mathbf{0}$ with tape contents containing x followed by blanks.

$$
\text { Let } x=a_{1} a_{2} \ldots a_{n}
$$

$\varphi_{1}=S\left(q_{0}, 0\right)$ state at time 0 is q_{0}
\bigwedge and
$\bigwedge_{h=1}^{n} T\left(a_{h}, h, 0\right)$ at time 0 cells 1 to n have a_{1} to a_{n}
$\bigwedge_{\substack{p(|x|)}}^{\boldsymbol{h}=\boldsymbol{n + 1}} \boldsymbol{T}(B, h, 0)$ at time 0 cells $n+1$ to $p(|x|)$ have blanks
\bigwedge and
$H(1,0)$ head at time 0 is in position 1
φ_{2} asserts M in exactly one state at any time \boldsymbol{i}
$\varphi_{2}=\bigwedge_{i=0}^{p(|x|)}\left(\oplus\left(S\left(q_{0}, i\right), S\left(q_{1}, i\right), \ldots, S\left(q_{|Q|}, i\right)\right)\right)$
φ_{3} asserts that each tape cell holds a unique symbol at any given time.

$$
\varphi_{3}=\bigwedge_{i=0}^{p(|x|)} \bigwedge_{h=1}^{p(|x|)} \oplus\left(T\left(b_{1}, h, i\right), T\left(b_{2}, h, i\right), \ldots, T\left(b_{|\Gamma|}, h, i\right)\right)
$$

For each time \boldsymbol{i} and for each cell position \boldsymbol{h} exactly one symbol $\boldsymbol{b} \in \boldsymbol{\Gamma}$ at cell position \boldsymbol{h} at time \boldsymbol{i}
φ_{4} asserts that the read/write head of M is in exactly one position at any time \boldsymbol{i}

$$
\varphi_{4}=\bigwedge_{i=0}^{p(|x|)}(\oplus(H(1, i), H(2, i), \ldots, H(p(|x|), i)))
$$

φ_{5} asserts that M accepts

- Let $\boldsymbol{q}_{\boldsymbol{a}}$ be unique accept state of M
- without loss of generality assume M runs all $\boldsymbol{p}(|x|)$ steps

$$
\varphi_{5}=S\left(q_{a}, p(|x|)\right)
$$

State at time $\boldsymbol{p}(|\boldsymbol{x}|)$ is $\boldsymbol{q}_{\boldsymbol{a}}$ the accept state.
φ_{5} asserts that M accepts

- Let $\boldsymbol{q}_{\boldsymbol{a}}$ be unique accept state of M
- without loss of generality assume M runs all $\boldsymbol{p}(|x|)$ steps

$$
\varphi_{5}=S\left(q_{a}, p(|x|)\right)
$$

State at time $\boldsymbol{p}(|\boldsymbol{x}|)$ is $\boldsymbol{q}_{\boldsymbol{a}}$ the accept state.
If we don't want to make assumption of running for all steps

$$
\varphi_{5}=\bigvee_{i=1}^{p(|x|)} S\left(q_{a}, i\right)
$$

which means M enters accepts state at some time.
φ_{6} asserts that M executes a unique instruction at each time

$$
\varphi_{6}=\bigwedge_{i=0}^{p(|x|)} \oplus(I(1, i), I(2, i), \ldots, I(m, i))
$$

where \boldsymbol{m} is max instruction number.
φ_{7} ensures that variables don't allow tape to change from one moment to next if the read/write head was not there.
"If head is not at position \boldsymbol{h} at time \boldsymbol{i} then at time $\boldsymbol{i}+\mathbf{1}$ the symbol at cell \boldsymbol{h} must be unchanged"
φ_{7} ensures that variables don't allow tape to change from one moment to next if the read/write head was not there.
"If head is not at position \boldsymbol{h} at time \boldsymbol{i} then at time $\boldsymbol{i}+\mathbf{1}$ the symbol at cell \boldsymbol{h} must be unchanged"

$$
\varphi_{7}=\bigwedge_{i} \bigwedge_{h} \bigwedge_{b \neq c}(\overline{H(h, i)} \Rightarrow \overline{T(b, h, i) \bigwedge T(c, h, i+1)})
$$

φ_{7} ensures that variables don't allow tape to change from one moment to next if the read/write head was not there.
"If head is not at position \boldsymbol{h} at time \boldsymbol{i} then at time $\boldsymbol{i}+\mathbf{1}$ the symbol at cell \boldsymbol{h} must be unchanged"

$$
\varphi_{7}=\bigwedge_{i} \bigwedge_{h} \bigwedge_{b \neq c}(\overline{H(h, i)} \Rightarrow \overline{T(b, h, i) \bigwedge T(c, h, i+1)})
$$

since $A \Rightarrow B$ is same as $\neg A \vee B$, rewrite above in CNF form

$$
\varphi_{7}=\bigwedge_{i} \bigwedge_{h} \bigwedge_{b \neq c}(H(h, i) \vee \neg T(b, h, i) \vee \neg T(c, h, i+1))
$$

φ_{8} asserts that changes in tableau/tape correspond to transitions of M (as Lenny says, this is the big cookie).

Let j th instruction be $<q_{j}, b_{j}, \boldsymbol{q}_{j}^{\prime}, \boldsymbol{b}_{j}^{\prime}, \boldsymbol{d}_{j}>$
φ_{8} asserts that changes in tableau/tape correspond to transitions of M (as Lenny says, this is the big cookie).

Let \boldsymbol{j} th instruction be $<q_{j}, b_{j}, q_{j}^{\prime}, b_{j}^{\prime}, d_{j}>$
$\varphi_{8}=\bigwedge_{i} \bigwedge_{j}\left(I(j, i) \Rightarrow S\left(q_{j}, i\right)\right){ }_{I f}$ instrj j executed at time i then state must be correct to do j
φ_{8} asserts that changes in tableau/tape correspond to transitions of M (as Lenny says, this is the big cookie).

Let j th instruction be $<q_{j}, b_{j}, q_{j}^{\prime}, b_{j}^{\prime}, d_{j}>$
$\varphi_{8}=\bigwedge_{i} \bigwedge_{j}\left(I(j, i) \Rightarrow S\left(q_{j}, i\right)\right){ }_{\text {If instr } r}$ executed at time i then state must be correct to do j \wedge

φ_{8} asserts that changes in tableau/tape correspond to transitions of M (as Lenny says, this is the big cookie).

Let j th instruction be $<q_{j}, b_{j}, a_{j}^{\prime}, b_{j}^{\prime}, d_{j}>$
$\varphi_{8}=\bigwedge_{i} \bigwedge_{j}\left(I(j, i) \Rightarrow S\left(q_{j}, i\right)\right){ }_{\text {If instr } r}$ executed at time i then state must be correct to do j
\wedge

\wedge
$\wedge_{i} \wedge_{h} \wedge_{j}\left[(I(j, i) \wedge H(h, i)) \Rightarrow T\left(b_{j}, h, i\right)\right]_{i j}$ was eeceuted and head was at position \boldsymbol{h}, then cell \boldsymbol{h} has correct symbol for \boldsymbol{j}
φ_{8} asserts that changes in tableau/tape correspond to transitions of M (as Lenny says, this is the big cookie).

Let j th instruction be $<q_{j}, b_{j}, a_{j}^{\prime}, b_{j}^{\prime}, d_{j}>$
$\varphi_{8}=\bigwedge_{i} \bigwedge_{j}\left(I(j, i) \Rightarrow S\left(q_{j}, i\right)\right)$ If instr j executed at time i then state must be correct to do j
\wedge
 \wedge $\wedge_{i} \wedge_{h} \wedge_{j}\left[(I(j, i) \wedge H(h, i)) \Rightarrow T\left(b_{j}, h, i\right)\right]_{\text {if was eecuted and head was at }}$ position h, then cell h has correct symbol for $j \bigwedge$
$\bigwedge_{i} \bigwedge_{j} \bigwedge_{h}\left[(I(j, i) \wedge H(h, i)) \Rightarrow T\left(b_{j}^{\prime}, h, i+1\right)\right]$ if j was done then at time i with head at \boldsymbol{h} then at next time step symbol b_{j}^{\prime} was indeed written in position \boldsymbol{h}
φ_{8} asserts that changes in tableau/tape correspond to transitions of M (as Lenny says, this is the big cookie).

Let j th instruction be $<q_{j}, b_{j}, a_{j}^{\prime}, b_{j}^{\prime}, d_{j}>$
$\varphi_{8}=\bigwedge_{i} \bigwedge_{j}\left(I(j, i) \Rightarrow S\left(q_{j}, i\right)\right){ }_{\text {If instr } r}$ executed at time i then state must be correct to do j
\wedge
 \wedge
$\wedge_{i} \wedge_{h} \wedge_{j}\left[(I(j, i) \wedge H(h, i)) \Rightarrow T\left(b_{j}, h, i\right)\right]_{\text {if i wa secured and head was at }}$ position h, then cell h has correct symbol for $j \bigwedge$
$\bigwedge_{i} \bigwedge_{j} \bigwedge_{h}\left[(I(j, i) \wedge H(h, i)) \Rightarrow T\left(b_{j}^{\prime}, h, i+1\right)\right]$ if j was done then at time i with head at h then at next time step symbol b_{j}^{\prime} was indeed written in position $n \bigwedge$ $\bigwedge_{i} \bigwedge_{j} \bigwedge_{h}\left[(I(j, i) \wedge H(h, i)) \Rightarrow H\left(h+d_{j}, i+1\right)\right]$ and head is moved properly according to instr \boldsymbol{j}.

Clauses of $f_{M}(x)$

$f_{M}(x)$ is the conjunction of $\mathbf{8}$ clause groups:

$$
f_{M}(x)=\varphi_{1} \wedge \varphi_{2} \wedge \varphi_{3} \wedge \varphi_{4} \wedge \varphi_{5} \wedge \varphi_{6} \wedge \varphi_{7} \wedge \varphi_{8}
$$

where each φ_{i} is a CNF formula.

Clauses of $f_{M}(x)$

$f_{M}(x)$ is the conjunction of $\mathbf{8}$ clause groups:

$$
f_{M}(x)=\varphi_{1} \wedge \varphi_{2} \wedge \varphi_{3} \wedge \varphi_{4} \wedge \varphi_{5} \wedge \varphi_{6} \wedge \varphi_{7} \wedge \varphi_{8}
$$

where each φ_{i} is a CNF formula.
φ_{1} asserts M starts in state \boldsymbol{q}_{0} at time $\mathbf{0}$ with tape contents containing \boldsymbol{x} followed by blanks.

Clauses of $f_{M}(x)$

$f_{M}(x)$ is the conjunction of 8 clause groups:

$$
f_{M}(x)=\varphi_{1} \wedge \varphi_{2} \wedge \varphi_{3} \wedge \varphi_{4} \wedge \varphi_{5} \wedge \varphi_{6} \wedge \varphi_{7} \wedge \varphi_{8}
$$

where each φ_{i} is a CNF formula.
φ_{1} asserts M starts in state \boldsymbol{q}_{0} at time $\mathbf{0}$ with tape contents containing \boldsymbol{x} followed by blanks.
φ_{2} asserts M in exactly one state at any time.

Clauses of $f_{M}(x)$

$f_{M}(x)$ is the conjunction of 8 clause groups:

$$
f_{M}(x)=\varphi_{1} \wedge \varphi_{2} \wedge \varphi_{3} \wedge \varphi_{4} \wedge \varphi_{5} \wedge \varphi_{6} \wedge \varphi_{7} \wedge \varphi_{8}
$$

where each φ_{i} is a CNF formula.
φ_{1} asserts M starts in state \boldsymbol{q}_{0} at time $\mathbf{0}$ with tape contents containing \boldsymbol{x} followed by blanks.
φ_{2} asserts M in exactly one state at any time.
φ_{3} asserts that each tape cell holds a unique symbol at any time.

Clauses of $f_{M}(x)$

$f_{M}(x)$ is the conjunction of 8 clause groups:

$$
f_{M}(x)=\varphi_{1} \wedge \varphi_{2} \wedge \varphi_{3} \wedge \varphi_{4} \wedge \varphi_{5} \wedge \varphi_{6} \wedge \varphi_{7} \wedge \varphi_{8}
$$

where each φ_{i} is a CNF formula.
φ_{1} asserts M starts in state \boldsymbol{q}_{0} at time $\mathbf{0}$ with tape contents containing \boldsymbol{x} followed by blanks.
φ_{2} asserts M in exactly one state at any time.
φ_{3} asserts that each tape cell holds a unique symbol at any time. φ_{4} asserts that the head of M is in exactly one position at any time.

Clauses of $f_{M}(x)$

$f_{M}(x)$ is the conjunction of 8 clause groups:

$$
f_{M}(x)=\varphi_{1} \wedge \varphi_{2} \wedge \varphi_{3} \wedge \varphi_{4} \wedge \varphi_{5} \wedge \varphi_{6} \wedge \varphi_{7} \wedge \varphi_{8}
$$

where each φ_{i} is a CNF formula.
φ_{1} asserts M starts in state \boldsymbol{q}_{0} at time $\mathbf{0}$ with tape contents containing \boldsymbol{x} followed by blanks.
φ_{2} asserts M in exactly one state at any time.
φ_{3} asserts that each tape cell holds a unique symbol at any time. φ_{4} asserts that the head of M is in exactly one position at any time. φ_{5} asserts that M accepts.

Clauses of $f_{M}(x)$

$f_{M}(x)$ is the conjunction of 8 clause groups:

$$
f_{M}(x)=\varphi_{1} \wedge \varphi_{2} \wedge \varphi_{3} \wedge \varphi_{4} \wedge \varphi_{5} \wedge \varphi_{6} \wedge \varphi_{7} \wedge \varphi_{8}
$$

where each φ_{i} is a CNF formula.
φ_{1} asserts M starts in state \boldsymbol{q}_{0} at time $\mathbf{0}$ with tape contents containing \boldsymbol{x} followed by blanks.
φ_{2} asserts M in exactly one state at any time.
φ_{3} asserts that each tape cell holds a unique symbol at any time.
φ_{4} asserts that the head of M is in exactly one position at any time.
φ_{5} asserts that M accepts.
φ_{6} asserts that M executes a unique instruction at each time.

Clauses of $f_{M}(x)$

$f_{M}(x)$ is the conjunction of 8 clause groups:

$$
f_{M}(x)=\varphi_{1} \wedge \varphi_{2} \wedge \varphi_{3} \wedge \varphi_{4} \wedge \varphi_{5} \wedge \varphi_{6} \wedge \varphi_{7} \wedge \varphi_{8}
$$

where each φ_{i} is a CNF formula.
φ_{1} asserts M starts in state \boldsymbol{q}_{0} at time $\mathbf{0}$ with tape contents containing \boldsymbol{x} followed by blanks.
φ_{2} asserts M in exactly one state at any time.
φ_{3} asserts that each tape cell holds a unique symbol at any time. φ_{4} asserts that the head of M is in exactly one position at any time. φ_{5} asserts that M accepts.
φ_{6} asserts that M executes a unique instruction at each time. φ_{7} ensures that variables don't allow tape to change from one moment to next if the read/write head was not there.

Clauses of $f_{M}(x)$

$f_{M}(x)$ is the conjunction of 8 clause groups:

$$
f_{M}(x)=\varphi_{1} \wedge \varphi_{2} \wedge \varphi_{3} \wedge \varphi_{4} \wedge \varphi_{5} \wedge \varphi_{6} \wedge \varphi_{7} \wedge \varphi_{8}
$$

where each φ_{i} is a CNF formula.
φ_{1} asserts \boldsymbol{M} starts in state \boldsymbol{q}_{0} at time $\mathbf{0}$ with tape contents containing \boldsymbol{x} followed by blanks.
φ_{2} asserts M in exactly one state at any time.
φ_{3} asserts that each tape cell holds a unique symbol at any time.
φ_{4} asserts that the head of M is in exactly one position at any time.
φ_{5} asserts that M accepts.
φ_{6} asserts that M executes a unique instruction at each time.
φ_{7} ensures that variables don't allow tape to change from one moment to next if the read/write head was not there.
φ_{8} asserts that changes in tableau/tape correspond to transitions of M.

Proof of Correctness

(Sketch)

- Given M, x, poly-time algorithm to construct $f_{M}(x)$
- if $f_{M}(x)$ is satisfiable then the truth assignment completely specifies an accepting computation of M on x
- if M accepts x then the accepting computation leads to an "obvious" truth assignment to $f_{M}(x)$. Simply assign the variables according to the state of M and cells at each time i.
Thus M accepts x if and only if $f_{M}(x)$ is satisfiable

List of NP-Complete Problems to Remember

Problems
© SAT
(2) 3SAT
(3) CircuitSAT

- Independent Set
- Clique
(0) Vertex Cover
(1) Hamilton Cycle and Hamilton Path in both directed and undirected graphs
(3) 3Color and Color

