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Recap

NP: languages that have non-deterministic polynomial time
algorithms

A language L is NP-Complete iff

L is in NP

for every L′ in NP, L′ ≤P L

L is NP-Hard if for every L′ in NP, L′ ≤P L.

Theorem (Cook-Levin)

SAT is NP-Complete.
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Pictorial View

P

NP

NP-C

NP-Hard
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P and NP

Possible scenarios:

1 P = NP.

2 P 6= NP

Question: Suppose P 6= NP. Is every problem in NP \ P also
NP-Complete?

Theorem (Ladner)

If P 6= NP then there is a problem/language X ∈ NP \ P such that
X is not NP-Complete.
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NP-Complete Problems

Previous lectures:

3-SAT

Independent Set

Hamiltonian Cycle

3-Color

Today:

Circuit SAT

SAT

Important: understanding the problems and that they are hard.

Proofs and reductions will be sketchy and mainly to give a flavor
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Part I

Circuit SAT
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Figure ��.�. A boolean circuit. Inputs enter from the left, and the output leaves to the right.

tested, and then flip the switches to that setting, turning on the light. (You can’t detect
the Adversary’s cheating, because you can’t see inside the box until the end.) The only
way to provably answer the Adversary’s question correctly is to try all 2n possible settings.
You quickly realize that this will take far longer than you expect to live, so you gracefully
decline the Adversary’s offer.

The Adversary smiles and says, “Ah, yes, of course, you have no reason to trust me.
But perhaps I can set your mind at ease.” He hands you a large roll of parchment—which
you hope was made from sheep skin—with a circuit diagram drawn (or perhaps tattooed)
on it. “Here are the complete plans for the circuit inside the box. Feel free to poke
around inside the box to make sure the plans are correct. Or build your own circuit
from these plans. Or write a computer program to simulate the circuit. Whatever you
like. If you discover that the plans don’t match the actual circuit in the box, you win
the trillion bucks.” A few spot checks convince you that the plans have no obvious flaws;
subtle cheating appears to be impossible.

But you should still decline the Adversary’s generous offer. The problem that the
Adversary is posing is called circuit satisfiability or C������S��: Given a boolean circuit,
is there is a set of inputs that makes the circuit output T���, or conversely, whether
the circuit always outputs F����. For any particular input setting, we can calculate the
output of the circuit in polynomial (actually, linear) time using depth-first-search. But
nobody knows how to solve C������S�� faster than just trying all 2n possible inputs
to the circuit by brute force, which requires exponential time. Admittedly, nobody has
actually formally proved that we can’t beat brute force—maybe, just maybe, there’s a
clever algorithm that just hasn’t been discovered yet—but nobody has actually formally
proved that anti-gravity unicorns don’t exist, either. For all practical purposes, it’s safe to
assume that there is no fast algorithm for C������S��.

�
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Circuits

Definition
A circuit is a directed acyclic graph with

1 ? ? 0 ?

∧ ∨ ∨

¬ ∧

Inputs:

Output: ∧
1 Input vertices (without

incoming edges) labelled with
0, 1 or a distinct variable.

2 Every other vertex is labelled
∨, ∧ or ¬.

3 Single node output vertex
with no outgoing edges.
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CSAT: Circuit Satisfaction

Definition (Circuit Satisfaction (CSAT).)

Given a circuit as input, is there an assignment to the input variables
that causes the output to get value 1?

Claim
CSAT is in NP.

1 Certificate:

Assignment to input variables.

2 Certifier:

Evaluate the value of each gate in a topological sort of
DAG and check the output gate value.
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Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.

Circuits are a much more powerful (and hence easier) way to express
Boolean formulas

However they are equivalent in terms of polynomial-time solvability.

Theorem
SAT ≤P 3SAT ≤P CSAT.

Theorem
CSAT ≤P SAT ≤P 3SAT.
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Converting a CNF formula into a Circuit
3SAT ≤P CSAT

Given 3CNF formula ϕ with n variables and m clauses, create a
Circuit C .

Inputs to C are the n boolean variables x1, x2, . . . , xn

Use NOT gate to generate literal ¬xi for each variable xi

For each clause (`1 ∨ `2 ∨ `3) use two OR gates to mimic
formula

Combine the outputs for the clauses using AND gates to obtain
the final output
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Example
3SAT ≤P CSAT

ϕ =
(
x1 ∨ x3 ∨ x4

)
∧
(
x1 ∨ ¬x2 ∨ ¬x3

)
∧
(
¬x2 ∨ ¬x3 ∨ x4

)
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The other direction: CSAT ≤P 3SAT

1 Now: CSAT ≤P SAT

2 More “interesting” direction.
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Converting a circuit into a CNF formula
Label the nodes

1 ? ? 0 ?

Inputs

Output:

∧

∧

∧

∨ ∨

¬

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

(A) Input circuit (B) Label the nodes.
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Converting a circuit into a CNF formula
Introduce a variable for each node

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

xk

xjxi

xf xg xh

xa xb xc xd xe

(B) Label the nodes. (C) Introduce var for each node.
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Converting a circuit into a CNF formula
Write a sub-formula for each variable that is true if the var is computed correctly.

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

xk

xjxi

xf xg xh

xa xb xc xd xe

xk (Demand a sat’ assignment!)
xk = xi ∧ xj
xj = xg ∧ xh
xi = ¬xf
xh = xd ∨ xe
xg = xb ∨ xc
xf = xa ∧ xb
xd = 0
xa = 1

(C) Introduce var for each node.
(D) Write a sub-formula for
each variable that is true if the
var is computed correctly.
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Reduction: CSAT ≤P SAT

1 For each gate (vertex) v in the circuit, create a variable xv

2 Case ¬: v is labeled ¬ and has one incoming edge from u (so
xv = ¬xu). In SAT formula generate, add clauses (xu ∨ xv),
(¬xu ∨ ¬xv). Observe that

xv = ¬xu is true ⇐⇒ (xu ∨ xv)
(¬xu ∨ ¬xv)

both true.
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Reduction: CSAT ≤P SAT
Continued...

1 Case ∨: So xv = xu ∨ xw . In SAT formula generated, add
clauses (xv ∨ ¬xu), (xv ∨ ¬xw), and (¬xv ∨ xu ∨ xw). Again,
observe that

(
xv = xu ∨ xw

)
is true ⇐⇒

(xv ∨ ¬xu),
(xv ∨ ¬xw),
(¬xv ∨ xu ∨ xw)

all true.
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Reduction: CSAT ≤P SAT
Continued...

1 Case ∧: So xv = xu ∧ xw . In SAT formula generated, add
clauses (¬xv ∨ xu), (¬xv ∨ xw), and (xv ∨ ¬xu ∨ ¬xw).
Again observe that

xv = xu ∧ xw is true ⇐⇒
(¬xv ∨ xu),
(¬xv ∨ xw),
(xv ∨ ¬xu ∨ ¬xw)

all true.
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Reduction: CSAT ≤P SAT
Continued...

1 If v is an input gate with a fixed value then we do the following.
If xv = 1 add clause xv . If xv = 0 add clause ¬xv

2 Add the clause xv where v is the variable for the output gate
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Converting a circuit into a CNF formula
Convert each sub-formula to an equivalent CNF formula

xk xk

xk = xi ∧ xj (¬xk ∨ xi) ∧ (¬xk ∨ xj) ∧ (xk ∨ ¬xi ∨ ¬xj)
xj = xg ∧ xh (¬xj ∨ xg) ∧ (¬xj ∨ xh) ∧ (xj ∨ ¬xg ∨ ¬xh)

xi = ¬xf (xi ∨ xf ) ∧ (¬xi ∨ ¬xf )
xh = xd ∨ xe (xh ∨ ¬xd) ∧ (xh ∨ ¬xe) ∧ (¬xh ∨ xd ∨ xe)
xg = xb ∨ xc (xg ∨ ¬xb) ∧ (xg ∨ ¬xc) ∧ (¬xg ∨ xb ∨ xc)
xf = xa ∧ xb (¬xf ∨ xa) ∧ (¬xf ∨ xb) ∧ (xf ∨ ¬xa ∨ ¬xb)

xd = 0 ¬xd

xa = 1 xa
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Converting a circuit into a CNF formula
Take the conjunction of all the CNF sub-formulas

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

xk

xjxi

xf xg xh

xa xb xc xd xe

xk ∧ (¬xk ∨ xi) ∧ (¬xk ∨ xj)
∧ (xk ∨¬xi ∨¬xj) ∧ (¬xj ∨ xg)
∧ (¬xj ∨xh) ∧ (xj ∨¬xg ∨¬xh)
∧ (xi ∨ xf ) ∧ (¬xi ∨ ¬xf )
∧ (xh ∨ ¬xd) ∧ (xh ∨ ¬xe)
∧ (¬xh ∨ xd ∨ xe) ∧ (xg ∨ ¬xb)
∧ (xg ∨ ¬xc) ∧ (¬xg ∨ xb ∨ xc)
∧ (¬xf ∨ xa) ∧ (¬xf ∨ xb)
∧ (xf ∨¬xa∨¬xb) ∧ (¬xd)∧xa

We got a CNF formula that is satisfiable if and only if the original
circuit is satisfiable.
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Correctness of Reduction

Need to show circuit C is satisfiable iff ϕC is satisfiable

⇒ Consider a satisfying assignment a for C
1 Find values of all gates in C under a
2 Give value of gate v to variable xv ; call this assignment a′
3 a′ satisfies ϕC (exercise)

⇐ Consider a satisfying assignment a for ϕC

1 Let a′ be the restriction of a to only the input variables
2 Value of gate v under a′ is the same as value of xv in a
3 Thus, a′ satisfies C
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Part II

Proof of Cook-Levin Theorem
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Cook-Levin Theorem

Theorem (Cook-Levin)

SAT is NP-Complete.

We have already seen that SAT is in NP.

Need to prove that every language L ∈ NP, L ≤P SAT

Difficulty: Infinite number of languages in NP. Must simultaneously
show a generic reduction strategy.

Miller, Hassanieh (UIUC) CS374 25 Spring 2020 25 / 42



Cook-Levin Theorem

Theorem (Cook-Levin)

SAT is NP-Complete.

We have already seen that SAT is in NP.

Need to prove that every language L ∈ NP, L ≤P SAT

Difficulty: Infinite number of languages in NP. Must simultaneously
show a generic reduction strategy.

Miller, Hassanieh (UIUC) CS374 25 Spring 2020 25 / 42



High-level Plan

What does it mean that L ∈ NP?
L ∈ NP implies that there is a non-deterministic TM M and
polynomial p() such that

L = {x ∈ Σ∗ | M accepts x in at most p(|x|) steps}

We will describe a reduction fM that depends on M, p such that:

fM takes as input a string x and outputs a SAT formula fM(x)

fM runs in time polynomial in |x|
x ∈ L if and only if fM(x) is satisfiable
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Plan continued

x fM(x)
fM

poly-time computable

fM(x) is satisfiable if and only if x ∈ L
fM(x) is satisfiable if and only if nondeterministic M accepts x in
p(|x|) steps

BIG IDEA
fM(x) will express “M on input x accepts in p(|x|) steps”
fM(x) will encode a computation history of M on x

fM(x) will be a carefully constructed CNF formula s.t if we have a
satisfying assignment to it, then we will be able to see a complete
accepting computation of M on x down to the last detail of where
the head is, what transition is chosen, what the tape contents are, at
each step.

Miller, Hassanieh (UIUC) CS374 27 Spring 2020 27 / 42



Plan continued

x fM(x)
fM

poly-time computable

fM(x) is satisfiable if and only if x ∈ L
fM(x) is satisfiable if and only if nondeterministic M accepts x in
p(|x|) steps

BIG IDEA
fM(x) will express “M on input x accepts in p(|x|) steps”
fM(x) will encode a computation history of M on x

fM(x) will be a carefully constructed CNF formula s.t if we have a
satisfying assignment to it, then we will be able to see a complete
accepting computation of M on x down to the last detail of where
the head is, what transition is chosen, what the tape contents are, at
each step.

Miller, Hassanieh (UIUC) CS374 27 Spring 2020 27 / 42



Tableau of Computation

M runs in time p(|x|) on x . Entire computation of M on x can be
represented by a “tableau”

time

tape cell position

0

1

2

3

1 2 3 p(|x|)

p(|x|)

state q0

state q2

1 0 0 1

0 0 0 1

blanks

blanks

4

Row i gives contents of all cells at time i
At time 0 tape has input x followed by blanks
Each row long enough to hold all cells M might ever have scanned.
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Variables of fM(x)

Four types of variable to describe computation of M on x

T (b, h, i) : tape cell at position h holds symbol b at time i .
1 ≤ h ≤ p(|x|), b ∈ Γ, 0 ≤ i ≤ p(|x|)

H(h, i): read/write head is at position h at time i .
1 ≤ h ≤ p(|x|), 0 ≤ i ≤ p(|x|)

S(q, i) state of M is q at time i q ∈ Q, 0 ≤ i ≤ p(|x|)

I (j , i) instruction number j is executed at time i
M is non-deterministic, need to specify transitions in some way.
Number transitions as 1, 2, . . . , ` where j th transition is
< qj , bj , q′j , b

′
j , dj > indication (q′j , b

′
j , dj) ∈ δ(qj , bj),

direction dj ∈ {−1, 0, 1}.
Number of variables is O(p(|x|)2) where constant in O() hides
dependence on fixed machine M .
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Notation

Some abbreviations for ease of notation∧m
k=1 xk means x1 ∧ x2 ∧ . . . ∧ xm∨m
k=1 xk means x1 ∨ x2 ∨ . . . ∨ xm⊕
(x1, x2, . . . , xk) is a formula that means exactly one of

x1, x2, . . . , xm is true. Can be converted to CNF form
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Clauses of fM(x)

fM(x) is the conjunction of 8 clause groups:

fM(x) = ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5 ∧ ϕ6 ∧ ϕ7 ∧ ϕ8

where each ϕi is a CNF formula. Described in subsequent slides.
Property: fM(x) is satisfied iff there is a truth assignment to the
variables that simultaneously satisfy ϕ1, . . . , ϕ8.
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ϕ1

ϕ1 asserts (is true iff) the variables are set T/F indicating that M
starts in state q0 at time 0 with tape contents containing x followed
by blanks.

Let x = a1a2 . . . an

ϕ1 = S(q0, 0) state at time 0 is q0

∧
and∧n

h=1 T (ah, h, 0) at time 0 cells 1 to n have a1 to an∧p(|x|)
h=n+1 T (B, h, 0) at time 0 cells n + 1 to p(|x|) have blanks∧
and

H(1, 0) head at time 0 is in position 1
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ϕ2

ϕ2 asserts M in exactly one state at any time i

ϕ2 =
∧p(|x|)

i=0

(
⊕(S(q0, i), S(q1, i), . . . , S(q|Q|, i))

)
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ϕ3

ϕ3 asserts that each tape cell holds a unique symbol at any given
time.

ϕ3 =

p(|x|)∧
i=0

p(|x|)∧
h=1

⊕(T (b1, h, i),T (b2, h, i), . . . ,T (b|Γ|, h, i))

For each time i and for each cell position h exactly one symbol
b ∈ Γ at cell position h at time i
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ϕ4

ϕ4 asserts that the read/write head of M is in exactly one position
at any time i

ϕ4 =

p(|x|)∧
i=0

(⊕ (H(1, i),H(2, i), . . . ,H(p(|x|), i)))
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ϕ5

ϕ5 asserts that M accepts

Let qa be unique accept state of M
without loss of generality assume M runs all p(|x|) steps

ϕ5 = S(qa, p(|x|))

State at time p(|x|) is qa the accept state.

If we don’t want to make assumption of running for all steps

ϕ5 =

p(|x|)∨
i=1

S(qa, i)

which means M enters accepts state at some time.
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ϕ6

ϕ6 asserts that M executes a unique instruction at each time

ϕ6 =

p(|x|)∧
i=0

⊕(I (1, i), I (2, i), . . . , I (m, i))

where m is max instruction number.
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ϕ7

ϕ7 ensures that variables don’t allow tape to change from one
moment to next if the read/write head was not there.

“If head is not at position h at time i then at time i + 1 the symbol
at cell h must be unchanged”

ϕ7 =
∧
i

∧
h

∧
b 6=c

(
H(h, i)⇒ T (b, h, i)

∧
T (c, h, i + 1)

)

since A⇒ B is same as ¬A ∨ B, rewrite above in CNF form

ϕ7 =
∧
i

∧
h

∧
b 6=c

(H(h, i) ∨ ¬T (b, h, i) ∨ ¬T (c, h, i + 1))
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ϕ8

ϕ8 asserts that changes in tableau/tape correspond to transitions of
M (as Lenny says, this is the big cookie).

Let j th instruction be < qj , bj , q′j , b
′
j , dj >

ϕ8 =
∧

i
∧

j(I (j , i)⇒ S(qj , i)) If instr j executed at time i then state must be correct to do j∧∧
i
∧

j(I (j , i)⇒ S(q′j , i + 1)) and at next time unit, state must be the proper next state for instr j∧∧
i
∧

h
∧

j [(I (j , i)
∧

H(h, i))⇒ T (bj , h, i)] if j was executed and head was at

position h, then cell h has correct symbol for j
∧∧

i
∧

j
∧

h[(I (j , i)∧H(h, i))⇒ T (b′j , h, i + 1)] if j was done then at time i with

head at h then at next time step symbol b′j was indeed written in position h
∧∧

i
∧

j
∧

h[(I (j , i) ∧ H(h, i))⇒ H(h + dj , i + 1)] and head is moved properly

according to instr j .
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Clauses of fM(x)

fM(x) is the conjunction of 8 clause groups:

fM(x) = ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5 ∧ ϕ6 ∧ ϕ7 ∧ ϕ8

where each ϕi is a CNF formula.

ϕ1 asserts M starts in state q0 at time 0 with tape contents containing x
followed by blanks.

ϕ2 asserts M in exactly one state at any time.

ϕ3 asserts that each tape cell holds a unique symbol at any time.

ϕ4 asserts that the head of M is in exactly one position at any time.

ϕ5 asserts that M accepts.

ϕ6 asserts that M executes a unique instruction at each time.

ϕ7 ensures that variables don’t allow tape to change from one moment to

next if the read/write head was not there.

ϕ8 asserts that changes in tableau/tape correspond to transitions of M .

Miller, Hassanieh (UIUC) CS374 40 Spring 2020 40 / 42



Clauses of fM(x)

fM(x) is the conjunction of 8 clause groups:

fM(x) = ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5 ∧ ϕ6 ∧ ϕ7 ∧ ϕ8

where each ϕi is a CNF formula.

ϕ1 asserts M starts in state q0 at time 0 with tape contents containing x
followed by blanks.

ϕ2 asserts M in exactly one state at any time.

ϕ3 asserts that each tape cell holds a unique symbol at any time.

ϕ4 asserts that the head of M is in exactly one position at any time.

ϕ5 asserts that M accepts.

ϕ6 asserts that M executes a unique instruction at each time.

ϕ7 ensures that variables don’t allow tape to change from one moment to

next if the read/write head was not there.

ϕ8 asserts that changes in tableau/tape correspond to transitions of M .

Miller, Hassanieh (UIUC) CS374 40 Spring 2020 40 / 42



Clauses of fM(x)

fM(x) is the conjunction of 8 clause groups:

fM(x) = ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5 ∧ ϕ6 ∧ ϕ7 ∧ ϕ8

where each ϕi is a CNF formula.

ϕ1 asserts M starts in state q0 at time 0 with tape contents containing x
followed by blanks.

ϕ2 asserts M in exactly one state at any time.

ϕ3 asserts that each tape cell holds a unique symbol at any time.

ϕ4 asserts that the head of M is in exactly one position at any time.

ϕ5 asserts that M accepts.

ϕ6 asserts that M executes a unique instruction at each time.

ϕ7 ensures that variables don’t allow tape to change from one moment to

next if the read/write head was not there.

ϕ8 asserts that changes in tableau/tape correspond to transitions of M .

Miller, Hassanieh (UIUC) CS374 40 Spring 2020 40 / 42



Clauses of fM(x)

fM(x) is the conjunction of 8 clause groups:

fM(x) = ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5 ∧ ϕ6 ∧ ϕ7 ∧ ϕ8

where each ϕi is a CNF formula.

ϕ1 asserts M starts in state q0 at time 0 with tape contents containing x
followed by blanks.

ϕ2 asserts M in exactly one state at any time.

ϕ3 asserts that each tape cell holds a unique symbol at any time.

ϕ4 asserts that the head of M is in exactly one position at any time.

ϕ5 asserts that M accepts.

ϕ6 asserts that M executes a unique instruction at each time.

ϕ7 ensures that variables don’t allow tape to change from one moment to

next if the read/write head was not there.

ϕ8 asserts that changes in tableau/tape correspond to transitions of M .

Miller, Hassanieh (UIUC) CS374 40 Spring 2020 40 / 42



Clauses of fM(x)

fM(x) is the conjunction of 8 clause groups:

fM(x) = ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5 ∧ ϕ6 ∧ ϕ7 ∧ ϕ8

where each ϕi is a CNF formula.

ϕ1 asserts M starts in state q0 at time 0 with tape contents containing x
followed by blanks.

ϕ2 asserts M in exactly one state at any time.

ϕ3 asserts that each tape cell holds a unique symbol at any time.

ϕ4 asserts that the head of M is in exactly one position at any time.

ϕ5 asserts that M accepts.

ϕ6 asserts that M executes a unique instruction at each time.

ϕ7 ensures that variables don’t allow tape to change from one moment to

next if the read/write head was not there.

ϕ8 asserts that changes in tableau/tape correspond to transitions of M .

Miller, Hassanieh (UIUC) CS374 40 Spring 2020 40 / 42



Clauses of fM(x)

fM(x) is the conjunction of 8 clause groups:

fM(x) = ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5 ∧ ϕ6 ∧ ϕ7 ∧ ϕ8

where each ϕi is a CNF formula.

ϕ1 asserts M starts in state q0 at time 0 with tape contents containing x
followed by blanks.

ϕ2 asserts M in exactly one state at any time.

ϕ3 asserts that each tape cell holds a unique symbol at any time.

ϕ4 asserts that the head of M is in exactly one position at any time.

ϕ5 asserts that M accepts.

ϕ6 asserts that M executes a unique instruction at each time.

ϕ7 ensures that variables don’t allow tape to change from one moment to

next if the read/write head was not there.

ϕ8 asserts that changes in tableau/tape correspond to transitions of M .

Miller, Hassanieh (UIUC) CS374 40 Spring 2020 40 / 42



Clauses of fM(x)

fM(x) is the conjunction of 8 clause groups:

fM(x) = ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5 ∧ ϕ6 ∧ ϕ7 ∧ ϕ8

where each ϕi is a CNF formula.

ϕ1 asserts M starts in state q0 at time 0 with tape contents containing x
followed by blanks.

ϕ2 asserts M in exactly one state at any time.

ϕ3 asserts that each tape cell holds a unique symbol at any time.

ϕ4 asserts that the head of M is in exactly one position at any time.

ϕ5 asserts that M accepts.

ϕ6 asserts that M executes a unique instruction at each time.

ϕ7 ensures that variables don’t allow tape to change from one moment to

next if the read/write head was not there.

ϕ8 asserts that changes in tableau/tape correspond to transitions of M .

Miller, Hassanieh (UIUC) CS374 40 Spring 2020 40 / 42



Clauses of fM(x)

fM(x) is the conjunction of 8 clause groups:

fM(x) = ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5 ∧ ϕ6 ∧ ϕ7 ∧ ϕ8

where each ϕi is a CNF formula.

ϕ1 asserts M starts in state q0 at time 0 with tape contents containing x
followed by blanks.

ϕ2 asserts M in exactly one state at any time.

ϕ3 asserts that each tape cell holds a unique symbol at any time.

ϕ4 asserts that the head of M is in exactly one position at any time.

ϕ5 asserts that M accepts.

ϕ6 asserts that M executes a unique instruction at each time.

ϕ7 ensures that variables don’t allow tape to change from one moment to

next if the read/write head was not there.

ϕ8 asserts that changes in tableau/tape correspond to transitions of M .

Miller, Hassanieh (UIUC) CS374 40 Spring 2020 40 / 42



Clauses of fM(x)

fM(x) is the conjunction of 8 clause groups:

fM(x) = ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5 ∧ ϕ6 ∧ ϕ7 ∧ ϕ8

where each ϕi is a CNF formula.

ϕ1 asserts M starts in state q0 at time 0 with tape contents containing x
followed by blanks.

ϕ2 asserts M in exactly one state at any time.

ϕ3 asserts that each tape cell holds a unique symbol at any time.

ϕ4 asserts that the head of M is in exactly one position at any time.

ϕ5 asserts that M accepts.

ϕ6 asserts that M executes a unique instruction at each time.

ϕ7 ensures that variables don’t allow tape to change from one moment to

next if the read/write head was not there.

ϕ8 asserts that changes in tableau/tape correspond to transitions of M .
Miller, Hassanieh (UIUC) CS374 40 Spring 2020 40 / 42



Proof of Correctness

(Sketch)

Given M , x , poly-time algorithm to construct fM(x)

if fM(x) is satisfiable then the truth assignment completely
specifies an accepting computation of M on x
if M accepts x then the accepting computation leads to an
”obvious” truth assignment to fM(x). Simply assign the
variables according to the state of M and cells at each time i .

Thus M accepts x if and only if fM(x) is satisfiable
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List of NP-Complete Problems to Remember

Problems
1 SAT

2 3SAT

3 CircuitSAT

4 Independent Set

5 Clique

6 Vertex Cover

7 Hamilton Cycle and Hamilton Path in both directed and
undirected graphs

8 3Color and Color
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