Algorithms & Models of Computation
CS/ECE 374 B, Spring 2020

Circuit satisfiability and
Cook-Levin Theorem

Lecture 24
Friday, May 1, 2020

ATEXed: January 19, 2020 04:28

NP: languages that have non-deterministic polynomial time
algorithms

Miller, Hassanieh (UIUC) Spring 2020 2/ 42

NP: languages that have non-deterministic polynomial time
algorithms

A language L is NP-Complete iff
e Lisin NP
o forevery L’ in NP, L’ <p L

Miller, Hassanieh (UIUC) Spring 2020 2/ 42

NP: languages that have non-deterministic polynomial time
algorithms

A language L is NP-Complete iff
e Lisin NP

o forevery L’ in NP, L’ <p L

L is NP-Hard if for every L’ in NP, L’ <p L.

Miller, Hassanieh (UIUC)

Spring 2020 2/ 42

Recap

NP: languages that have non-deterministic polynomial time
algorithms

A language L is NP-Complete iff
e Lisin NP
o forevery L’ in NP, L’ <p L

L is NP-Hard if for every L’ in NP, L’ <p L.

Theorem (Cook-Levin)
SAT is NP-Complete.

Miller, Hassanieh (UIUC)

Spring 2020 2/ 42

Pictorial View

NP-Hard

Miller, Hassanieh (UIUC) Spring 2020 3/42

P and NP

Possible scenarios:
@ P = NP.
Q@ P#NP

Miller, Hassanieh (UIUC) Spring 2020 4 /42

P and NP

Possible scenarios:
@ P = NP.
Q@ P#NP

Question: Suppose P # NP. Is every problem in NP \ P also
NP-Complete?

Miller, Hassanieh (UIUC) Spring 2020 4 /42

P and NP

Possible scenarios:
@ P = NP.
Q@ P#NP

Question: Suppose P # NP. Is every problem in NP \ P also
NP-Complete?

Theorem (Ladner)

If P # NP then there is a problem/language X € NP \ P such that
X is not NP-Complete.

Miller, Hassanieh (UIUC) Spring 2020 4 /42

NP-Complete Problems

Previous lectures:

o 3-SAT

@ Independent Set
@ Hamiltonian Cycle
e 3-Color

Today:

@ Circuit SAT
e SAT

Important: understanding the problems and that they are hard.

Proofs and reductions will be sketchy and mainly to give a flavor

Miller, Hassanieh (UIUC) Spring 2020 5/ 42

Part |

Circuit SAT

Miller, Hassanieh (UIUC) Spring 2020 6 /42

Circuits

y y

Figure 10.1. An AND gate, an OR gate, and a NOT gate.

>0
. o

Figure 10.2. A boolean circuit. Inputs enter from the left, and the output leaves to the right.

Miller, Hassanieh (UIUC) Spring 2020

Circuits

A circuit is a directed acyclic graph with
Output:() @ Input vertices (without

incoming edges) labelled with
0, 1 or a distinct variable.

@ Every other vertex is labelled
V, A\ or —.

© Single node output vertex
with no outgoing edges.

Miller, Hassanieh (UIUC) CS374 8 Spring 2020 8 /42

CSAT: Circuit Satisfaction

Definition (Circuit Satisfaction (CSAT).)

Given a circuit as input, is there an assignment to the input variables
that causes the output to get value 17

Miller, Hassanieh (UIUC) Spring 2020 9 /42

CSAT: Circuit Satisfaction

Definition (Circuit Satisfaction (CSAT).)

Given a circuit as input, is there an assignment to the input variables
that causes the output to get value 17

CSAT /s in NP. l

@ Certificate: Assignment to input variables.

@ Certifier: Evaluate the value of each gate in a topological sort of
DAG and check the output gate value.

Miller, Hassanieh (UIUC) Spring 2020 9 /42

Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.

Circuits are a much more powerful (and hence easier) way to express
Boolean formulas

Miller, Hassanieh (UIUC) Spring 2020 10 / 42

Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.

Circuits are a much more powerful (and hence easier) way to express
Boolean formulas

However they are equivalent in terms of polynomial-time solvability.

SAT <p 3SAT <p CSAT. l

CSAT <, SAT <p 3SAT.

Miller, Hassanieh (UIUC) CS374 10 Spring 2020 10 / 42

Converting a CNF formula into a Circuit

3SAT <p CSAT

Given 3CNF formula ¢ with n variables and m clauses, create a
Circuit C.

@ Inputs to C are the n boolean variables x;, x2, ..., X,
@ Use NOT gate to generate literal —x; for each variable x;

@ For each clause (€1 V €2 V £3) use two OR gates to mimic
formula

@ Combine the outputs for the clauses using AND gates to obtain
the final output

Miller, Hassanieh (UIUC) Spring 2020 11 / 42

Example

3SAT <p CSAT

Y= (Xl V x3 V X4> AN <X1 V —xp V ﬂX3> AN (ﬂXg V —x3 V X4>

Miller, Hassanieh (UIUC) Spring 2020 12 / 42

The other direction: CSAT <p 3SAT

@ Now: CSAT <p SAT
© More “interesting” direction.

Miller, Hassanieh (UIUC) Spring 2020 13 / 42

Converting a circuit into a CNF' formula

Label the nodes

Output: Output:

Inputs Inputs

(A) Input circuit (B) Label the nodes.

Miller, Hassanieh (UIUC) Spring 2020

14 / 42

Converting a circuit into a CNF' formula

Introduce a variable for each node

Output:

Inputs Inputs

(B) Label the nodes. (C) Introduce var for each node.

Miller, Hassanieh (UIUC) Spring 2020 15 / 42

Converting a circuit into a CNF' formula

Write a sub-formula for each variable that is true if the var is computed correctly.

Xk (Demand a sat’ assignment!)
Xk = X; N\ Xj

Xj = Xg /\ Xp

Xj = TXr

Xp = X4 V Xe

Xg = Xp V Xc

Xf = Xz /\ Xp

Xd = 0

X, =1

(D) Write a sub-formula for
(C) Introduce var for each node. each variable that is true if the

var is computed correctly.

Miller, Hassanieh (UIUC)

Spring 2020 16 / 42

Reduction: CSAT <p SAT

@ For each gate (vertex) v in the circuit, create a variable x,

@ Case —: v is labeled = and has one incoming edge from u (so
X, = —X,). In SAT formula generate, add clauses (x, V x,),
(—xu V —x,). Observe that

(x4 V x,)

(=% V —x0) both true.

X, = X, IS true <—

Miller, Hassanieh (UIUC) Spring 2020 17 / 42

Reduction: CSAT <p SAT

Continued...

@ Case V: So x, = x, V xy. In SAT formula generated, add
clauses (x, V =xy), (x, V —xy), and (—x, V X, V x,,). Again,
observe that

(xv V —xy),
<xv =x, V xw> is true <— (xv V —xy), all true.
(—x, V x4 V xy)

Miller, Hassanieh (UIUC) Spring 2020 18 / 42

Reduction: CSAT <p SAT

Continued...

@ Case A: So x, = x4, A Xy. In SAT formula generated, add
clauses (—x, V x,), (—x, V xy), and (x, V =x, V —xy,).
Again observe that

(—x V xu),
Xy = Xy A\ X, IS true <> (—x V xu), all true.
(xv V —xy V 2xy)

Miller, Hassanieh (UIUC) Spring 2020 19 / 42

Reduction: CSAT <p SAT

Continued...

@ If v is an input gate with a fixed value then we do the following.
If x, = 1 add clause x,. If x, = 0 add clause —x,

© Add the clause x, where v is the variable for the output gate

Miller, Hassanieh (UIUC) Spring 2020 20 / 42

Converting a circuit into a CNF' formula

Convert each sub-formula to an equivalent CNF formula

Xk Xk
Xk = X; N\ Xj (—IXk Vv X,') A\ (—|xk Vv Xj) N (Xk V —x; V _|Xj)
Xi =Xg Axn || (5XV Xg) A (—x; V xp) A (X5 V —Xg V —1Xp)
X; = —Xf (xi V x¢) A (—x;i V —xr)
Xp=Xg V Xe || (XxnV —xg) A (XnV —xe) A (7Xn V Xg V Xe)
Xg = Xp V Xc || (Xg V 7xp) A (Xg V —xc) A (—Xg V Xp V Xc)
xXr = Xa AXp || (5xrV x3) A (—xr V xp) A (Xr V21X V —1Xp)
Xd = 0 —Xd

Xa = Xa

Miller, Hassanieh (UIUC) CS374 21 Spring 2020 21/ 42

Converting a circuit into a CNF' formula

Take the conjunction of all the CNF sub-formulas

Xk N (—IXk \Y X,') AN (—|Xk \Y Xj)
A (X V =XV =x;) A (51X V Xg)
A (—x; V xp) A (X5 V —Xg V —xp)
AN (X,' Vv Xf) AN (—lX,' Vv _|Xf)

A (xn V —xg) A (xn V —1Xe)

A (—Xn V X4 V Xe) A (Xg V —1Xp)
A (Xg V 2xc) A (mxg V Xp V Xc)
VAN (_|Xf Vv Xa) VAN (—le Vv Xb)

A (xFV—xa Vaxp) A (5Xa) A X,

We got a CNF formula that is satisfiable if and only if the original
circuit is satisfiable.

Miller, Hassanieh (UIUC) Spring 2020 22 /42

Correctness of Reduction

Need to show circuit C is satisfiable iff ¢ is satisfiable
=> Consider a satisfying assignment a for C

@ Find values of all gates in C under a
@ Give value of gate v to variable x,; call this assignment a’
@ a’ satisfies ¢ (exercise)

< Consider a satisfying assignment a for ¢

@ Let a’ be the restriction of a to only the input variables
® Value of gate v under a’ is the same as value of x, in a
© Thus, a’ satisfies C

Miller, Hassanieh (UIUC) Spring 2020 23 /42

Part 1l

Proof of Cook-Levin Theorem

Spring 2020

Cook-Levin Theorem

Theorem (Cook-Levin)
SAT is NP-Complete.

We have already seen that SAT is in NP.

Need to prove that every language L € NP, L <p SAT

Miller, Hassanieh (UIUC) Spring 2020 25/ 42

Cook-Levin Theorem

Theorem (Cook-Levin)
SAT is NP-Complete.

We have already seen that SAT is in NP.
Need to prove that every language L € NP, L <p SAT

Difficulty: Infinite number of languages in NP. Must simultaneously
show a generic reduction strategy.

Miller, Hassanieh (UIUC) Spring 2020 25/ 42

High-level Plan

What does it mean that L € NP?

L € NP implies that there is a non-deterministic TM M and
polynomial p() such that

L={x €X*| M accepts x in at most p(|x|) steps}

Miller, Hassanieh (UIUC)

Spring 2020 26 / 42

High-level Plan

What does it mean that L € NP?

L € NP implies that there is a non-deterministic TM M and
polynomial p() such that

L={x €X*| M accepts x in at most p(|x|) steps}

We will describe a reduction fy, that depends on M, p such that:

o fy takes as input a string x and outputs a SAT formula fy(x)
@ fy runs in time polynomial in |x|

e x € L if and only if fy(x) is satisfiable

Miller, Hassanieh (UIUC)

Spring 2020 26 / 42

Plan continued

T fu(w)
. v [

poly-time computable

fm(x) is satisfiable if and only if x € L

fm(x) is satisfiable if and only if nondeterministic M accepts x in
p(|x]) steps

Miller, Hassanieh (UIUC)

Spring 2020 27 / 42

Plan continued

T fu(w)

. I s

poly-time computable

fm(x) is satisfiable if and only if x € L
fm(x) is satisfiable if and only if nondeterministic M accepts x in

p(|x]) steps

BIG IDEA

o fu(x) will express “M on input x accepts in p(|x|) steps”

o fp(x) will encode a computation history of M on x
fm(x) will be a carefully constructed CNF formula s.t if we have a
satisfying assignment to it, then we will be able to see a complete
accepting computation of M on x down to the last detail of where
the head is, what transition is chosen, what the tape contents are, at

each step.
Miller, Hassanieh (UIUC) CS374 27 Spring 2020 27 / 42

Tableau of Computation

M runs in time p(|x|) on x. Entire computation of M on x can be
represented by a “tableau”

tape cell position
34 -io---- ()

state gy

—
B

0f1 blanks state gy

time
:

()

Row i gives contents of all cells at time i
At time 0 tape has input x followed by blanks
Each row long enough to hold all cells M might ever have scanned.

Miller, Hassanieh (UIUC) Spring 2020 28 / 42

Variables of

Four types of variable to describe computation of M on x

Miller, Hassanieh (UIUC) Spring 2020 29 / 42

Variables of

Four types of variable to describe computation of M on x

@ T(b, h,i) : tape cell at position h holds symbol b at time i.
1<h<p(x]).bel, 0<i<p(x])

Miller, Hassanieh (UIUC) Spring 2020 29 / 42

Variables of

Four types of variable to describe computation of M on x
@ T(b, h,i) : tape cell at position h holds symbol b at time i.
1< h<p(lx]). be T, 0<i<p(xl)

@ H(h,i): read/write head is at position h at time i.
1< h<p(lx]).0<i<p(]x])

Spring 2020 29 / 42

Miller, Hassanieh (UIUC)

Variables of

Four types of variable to describe computation of M on x
@ T(b, h,i) : tape cell at position h holds symbol b at time i.
1< h<p(lx]). be T, 0<i<p(xl)

@ H(h,i): read/write head is at position h at time i.
1< h<p(lx]).0<i<p(]x])

e S(q,i) stateof Misqgattimeiqg e Q,0<i < p(|x])

Spring 2020 29 / 42

Miller, Hassanieh (UIUC)

Variables of

Four types of variable to describe computation of M on x

@ T(b, h,i) : tape cell at position h holds symbol b at time i.
1<h<p(x]).bel, 0<i<p(x])

@ H(h,i): read/write head is at position h at time i.
1< h<p(lx]).0<i<p(]x])

e S(q,i) stateof Misqgattimeiqg e Q,0<i < p(|x])

e I(j, i) instruction number j is executed at time i
M is non-deterministic, need to specify transitions in some way.
Number transitions as 1,2, ..., £ where jth transition is
< gj, bj, qj{a ij d; > indication (qja bja d;) € 4(q;, b)),
direction d; € {—1,0,1}.

Miller, Hassanieh (UIUC) Spring 2020 29 / 42

Variables of

Four types of variable to describe computation of M on x

@ T(b, h,i) : tape cell at position h holds symbol b at time i.
1<h<p(x]).bel, 0<i<p(x])

@ H(h,i): read/write head is at position h at time i.
1< h<p(lx]).0<i<p(]x])

e S(q,i) stateof Misqgattimeiqg e Q,0<i < p(|x])

e I(j, i) instruction number j is executed at time i
M is non-deterministic, need to specify transitions in some way.
Number transitions as 1,2, ..., £ where jth transition is
< gj, bj, qj{7 bja d; > indication (qja bja d;) € 4(q;, b)),
direction d; € {—1,0,1}.
Number of variables is O(p(|x|)?) where constant in O() hides
dependence on fixed machine M.

Miller, Hassanieh (UIUC) Spring 2020 29 / 42

Notation

Some abbreviations for ease of notation
Ny Xk means x; A Xo A oo A X

Vi, Xk means x1 V xa V... V Xm

PD(x1, X2, . . ., Xx) is a formula that means exactly one of
X1y X24 « « « 3 Xm 1S true. Can be converted to CNF form

Miller, Hassanieh (UIUC)

Spring 2020

Clauses of

fm(x) is the conjunction of 8 clause groups:

fm(x) = 1 A2 A w3 A pa A ps A s A pr A pg

where each ; is a CNF formula. Described in subsequent slides.
Property: fy(x) is satisfied iff there is a truth assignment to the
variables that simultaneously satisfy ¢1, ..., ¢s.

Miller, Hassanieh (UIUC) Spring 2020 31/

1 asserts (is true iff) the variables are set T/F indicating that M

starts in state gg at time 0 with tape contents containing x followed
by blanks.

Let x = a1a>...a,

901 == S(q(], 0) state at time 0 is qp

Miller, Hassanieh (UIUC) Spring 2020 32 /42

1 asserts (is true iff) the variables are set T/F indicating that M
starts in state gg at time 0 with tape contents containing x followed

by blanks.

Let x = a1a>...a,

901 == S(q(], 0) state at time 0 is qp
/\ and

Miller, Hassanieh (UIUC) Spring 2020 32 /42

1 asserts (is true iff) the variables are set T/F indicating that M

starts in state gg at time 0 with tape contents containing x followed
by blanks.

Let x = a1a>...a,
901 == S(q(], 0) state at time 0 is qp
/\ and

n_ T ah h O at time 0 cells 1 to n have a; to ap
h=1 9 Ty

Miller, Hassanieh (UIUC) Spring 2020 32 /42

1 asserts (is true iff) the variables are set T/F indicating that M

starts in state gg at time 0 with tape contents containing x followed
by blanks.

Let x = a1a>...a,

901 == S(q(], 0) state at time 0 is qp

/\ and
/\Ir;=1 T(ah, h, O) at time 0 cells 1 to n have aj to a,

/\Zg)':lj_l T(B, h, 0) at time 0 cells n 4+ 1 to p(|x|) have blanks

Miller, Hassanieh (UIUC) Spring 2020 32 /42

1 asserts (is true iff) the variables are set T/F indicating that M

starts in state gg at time 0 with tape contents containing x followed
by blanks.

Let x = a1a>...a,

901 == S(q(], 0) state at time 0 is qp

/\ and
/\Ir;=1 T(ah, h, O) at time 0 cells 1 to n have aj to a,

/\Zg)':lj_l T(B, h, 0) at time 0 cells n 4+ 1 to p(|x|) have blanks

/\ and
H(l, 0) head at time 0 is in position 1

Miller, Hassanieh (UIUC) Spring 2020 32 /42

(p2 asserts M in exactly one state at any time i

e2 = NG (@(S (05 1), S(G15 1), - - -5 S(aja)» 1))

Miller, Hassanieh (UIUC) Spring 2020 33 /42

(p3 asserts that each tape cell holds a unique symbol at any given
time.

p(1x]) p(1x])
es= \ N\ ®(T(b1, h,i), T(ba, h,i),..., T(byg,h,i))

i=0 h=1

For each time i and for each cell position h exactly one symbol
b € T at cell position h at time i

Miller, Hassanieh (UIUC) Spring 2020 34 /42

(4 asserts that the read/write head of M is in exactly one position
at any time i

p(lx])
o=\ (& (H(1,i), H(2,i),. .., H(p(Ix]),)))
i=0

Miller, Hassanieh (UIUC) Spring 2020 35 /42

(5 asserts that M accepts
@ Let g, be unique accept state of M

@ without loss of generality assume M runs all p(|x|) steps

w5 = S(qa, p(|x[))

State at time p(|x|) is g, the accept state.

Miller, Hassanieh (UIUC) Spring 2020 36 / 42

(5 asserts that M accepts
@ Let g, be unique accept state of M

@ without loss of generality assume M runs all p(|x|) steps

w5 = S(qa, p(|x]))

State at time p(|x|) is g, the accept state.
If we don’t want to make assumption of running for all steps

p(Ix])
$5 = \/ 5(qa, i)
i=1

which means M enters accepts state at some time.

Miller, Hassanieh (UIUC) Spring 2020 36 / 42

(e asserts that M executes a unique instruction at each time

p(1x])
o = [\ ®UM,i),1(2,i),...,1(m,i))
i=0

where m is max instruction number.

Miller, Hassanieh (UIUC) Spring 2020 37 /42

(p7 ensures that variables don't allow tape to change from one
moment to next if the read/write head was not there.

“If head is not at position h at time i then at time i + 1 the symbol
at cell h must be unchanged”

Miller, Hassanieh (UIUC) Spring 2020 38 /42

(p7 ensures that variables don't allow tape to change from one
moment to next if the read/write head was not there.

“If head is not at position h at time i then at time i + 1 the symbol
at cell h must be unchanged”

er=/ A\/\/N\ (H(h, i) = T(b,h,i) \ T(c,h,i+ 1))

i h b#c

Miller, Hassanieh (UIUC) Spring 2020 38 /42

(p7 ensures that variables don't allow tape to change from one
moment to next if the read/write head was not there.

“If head is not at position h at time i then at time i + 1 the symbol
at cell h must be unchanged”

er=/ A\/\/N\ (H(h, i) = T(b,h,i) \ T(c,h,i+ 1))

i h b#c

since A = B is same as = A V B, rewrite above in CNF form

Y1 = /\/\ /\ (H(h,i) v =T(b,h,i) vV =T(c, h,i+ 1))

i h b#c

Miller, Hassanieh (UIUC) Spring 2020 38 /42

(g asserts that changes in tableau/tape correspond to transitions of
M (as Lenny says, this is the big cookie).

Let jth instruction be < gj, bj, qu, bJ'., d; >

Miller, Hassanieh (UIUC) Spring 2020 39 /42

(g asserts that changes in tableau/tape correspond to transitions of
M (as Lenny says, this is the big cookie).

Let jth instruction be < gj, bj, qu, bJ'., d; >

SOB = /\’ /\j(l (j, i) = S(qj, i)) If instr j executed at time i then state must be correct to do j

Miller, Hassanieh (UIUC) Spring 2020 39 /42

(g asserts that changes in tableau/tape correspond to transitions of
M (as Lenny says, this is the big cookie).

Let jth instruction be < gj, bj, qu, bJ'., d; >
SOB = /\’ /\j(l(j, i) :> S(qj, i)) If instr j executed at time i then state must be correct to do j

. .) -
/\i /\j(l (j, l) :> S(qj, I + 1)) and at next time unit, state must be the proper next state for instr j

Miller, Hassanieh (UIUC) Spring 2020 39 /42

(g asserts that changes in tableau/tape correspond to transitions of
M (as Lenny says, this is the big cookie).

Let jth instruction be < gj, bj, qu, bJ'., d; >
SOB = /\’ /\j(l(j, i) :> S(qj, i)) If instr j executed at time i then state must be correct to do j
/\i /\j(l(j’ i) :> S(qj, i + 1)) and at next time unit, state must be the proper next state for instr j

/\’- /\h /\j[(l(j7 i) /\ H(h, i)) :> T(bj, h, i)] if j was executed and head was at

position h, then cell h has correct symbol for j

Miller, Hassanieh (UIUC) Spring 2020 39 /42

(g asserts that changes in tableau/tape correspond to transitions of
M (as Lenny says, this is the big cookie).

Let jth instruction be < gj, bj, qu, bJ'., d; >

SOB = /\’ /\j(l (j, i) :> S(qj, i)) If instr j executed at time i then state must be correct to do j

. .) -
/\i /\j(l (j, l) :> S(qj, I + 1)) and at next time unit, state must be the proper next state for instr j

/\’- /\h /\j[(l(j7 i) /\ H(h, i)) :> T(bj, h, i)] if j was executed and head was at

position h, then cell h has correct symbol for j
/\i /\j /\h[(l(—i’ i) /\ H(h, i)) = T(bj, h, i + 1)] if j was done then at time i with

head at h then at next time step symbol b; was indeed written in position h

Miller, Hassanieh (UIUC) Spring 2020 39 /42

(g asserts that changes in tableau/tape correspond to transitions of
M (as Lenny says, this is the big cookie).

Let jth instruction be < gj, bj, qu, bJ'., d; >

SOB = /\’ /\j(l (j, i) :> S(qj, i)) If instr j executed at time i then state must be correct to do j

. .) -
/\i /\j(l (j, l) :> S(qj, I + 1)) and at next time unit, state must be the proper next state for instr j

/\’- /\h /\j[(l(j7 i) /\ H(h, i)) :> T(bj, h, i)] if j was executed and head was at

position h, then cell h has correct symbol for j

/\i /\j /\h[(l(j, i) /\ H(h, i)) => T(bj, h, i + 1)] if j was done then at time i with

head at h then at next time step symbol b; was indeed written in position h /\
/\’- /\j /\h[(l(j’ i) /\ H(h, i)) :> H(h + Clj, i + 1)] and head is moved properly

according to instr j.

Miller, Hassanieh (UIUC) Spring 2020 39 /42

Clauses of

fm(x) is the conjunction of 8 clause groups:

fm(x) = 1 A2 APz Apa N ps A ps A pr A pg

where each ; is a CNF formula.

Miller, Hassanieh (UIUC) Spring 2020 40 / 42

Clauses of

fm(x) is the conjunction of 8 clause groups:
fm(x) = 1 A2 APz Apa N ps A ps A pr A pg

where each ; is a CNF formula.

(1 asserts M starts in state go at time 0 with tape contents containing x
followed by blanks.

Miller, Hassanieh (UIUC) Spring 2020 40 / 42

Clauses of

fm(x) is the conjunction of 8 clause groups:
fm(x) = 1 A2 APz Apa N ps A ps A pr A pg

where each ; is a CNF formula.

(1 asserts M starts in state go at time 0 with tape contents containing x
followed by blanks.
2 asserts M in exactly one state at any time.

Miller, Hassanieh (UIUC) Spring 2020 40 / 42

Clauses of

fm(x) is the conjunction of 8 clause groups:
fm(x) = 1 A2 APz Apa N ps A ps A pr A pg

where each ; is a CNF formula.

(1 asserts M starts in state go at time 0 with tape contents containing x
followed by blanks.

2 asserts M in exactly one state at any time.

(3 asserts that each tape cell holds a unique symbol at any time.

Miller, Hassanieh (UIUC) Spring 2020 40 / 42

Clauses of

fm(x) is the conjunction of 8 clause groups:

fm(x) = 1 A2 APz Apa N ps A ps A pr A pg
where each ; is a CNF formula.

(1 asserts M starts in state go at time 0 with tape contents containing x
followed by blanks.

2 asserts M in exactly one state at any time.

(3 asserts that each tape cell holds a unique symbol at any time.

pa asserts that the head of M is in exactly one position at any time.

Miller, Hassanieh (UIUC) Spring 2020 40 / 42

Clauses of

fm(x) is the conjunction of 8 clause groups:

fm(x) = 1 A2 APz Apa N ps A ps A pr A pg
where each ; is a CNF formula.

(1 asserts M starts in state go at time 0 with tape contents containing x
followed by blanks.

2 asserts M in exactly one state at any time.

(3 asserts that each tape cell holds a unique symbol at any time.

pa asserts that the head of M is in exactly one position at any time.

5 asserts that M accepts.

Miller, Hassanieh (UIUC) CS374 40 Spring 2020 40 / 42

Clauses of

fm(x) is the conjunction of 8 clause groups:

fm(x) = 1 A2 APz Apa N ps A ps A pr A pg
where each ; is a CNF formula.

(1 asserts M starts in state go at time 0 with tape contents containing x
followed by blanks.

2 asserts M in exactly one state at any time.

(3 asserts that each tape cell holds a unique symbol at any time.

pa asserts that the head of M is in exactly one position at any time.

5 asserts that M accepts.

e asserts that M executes a unique instruction at each time.

Miller, Hassanieh (UIUC) CS374 40 Spring 2020 40 / 42

Clauses of

fm(x) is the conjunction of 8 clause groups:

fm(x) = 1 A2 APz Apa N ps A ps A pr A pg
where each ; is a CNF formula.

(1 asserts M starts in state go at time 0 with tape contents containing x
followed by blanks.

2 asserts M in exactly one state at any time.

(3 asserts that each tape cell holds a unique symbol at any time.

pa asserts that the head of M is in exactly one position at any time.

5 asserts that M accepts.

e asserts that M executes a unique instruction at each time.

(o7 ensures that variables don’t allow tape to change from one moment to
next if the read/write head was not there.

Miller, Hassanieh (UIUC) CS374 40 Spring 2020 40 / 42

Clauses of

fm(x) is the conjunction of 8 clause groups:

fm(x) = 1 A2 APz Apa N ps A ps A pr A pg
where each ; is a CNF formula.

(1 asserts M starts in state go at time 0 with tape contents containing x
followed by blanks.

2 asserts M in exactly one state at any time.

(3 asserts that each tape cell holds a unique symbol at any time.

pa asserts that the head of M is in exactly one position at any time.

5 asserts that M accepts.

e asserts that M executes a unique instruction at each time.

(o7 ensures that variables don’t allow tape to change from one moment to
next if the read/write head was not there.

(pg asserts that changes in tableau/tape correspond to transitions of M.

Miller, Hassanieh (UIUC) CS374 40 Spring 2020 40 / 42

Proof of Correctness

(Sketch)
e Given M, x, poly-time algorithm to construct fy(x)

o if fap(x) is satisfiable then the truth assignment completely
specifies an accepting computation of M on x

o if M accepts x then the accepting computation leads to an
"obvious” truth assignment to fps(x). Simply assign the
variables according to the state of M and cells at each time i.

Thus M accepts x if and only if fy;(x) is satisfiable

Miller, Hassanieh (UIUC) CS374 41 Spring 2020 41 / 42

List of NP-Complete Problems to Remember

SAT

3SAT
CircuitSAT
Independent Set

Clique
Vertex Cover

Hamilton Cycle and Hamilton Path in both directed and
undirected graphs

@ 3Color and Color

000000

Miller, Hassanieh (UIUC) CS374 42 Spring 2020 42 / 42

	Circuit SAT
	Proof of Cook-Levin Theorem

