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Regular Languages

Regular expressions allow us to describe/express a class of
languages compactly and precisely.

Equivalence with DFAs show the following: given any regular
expression r there is a very efficient algorithm for solving the
language recognition problem for L(r): given w ∈ Σ∗ is
w ∈ L(r)?

In fact the running time of the algorithm is linear in
|w |.

Disadvantage of regular expressions/languages: too simple and
cannot express interesting features such as balanced parenthesis that
we need in programming languages. No recursion allowed even in
limited form.
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Language classes: Chomsky Hierarchy

Generative models for languages based on grammars.

Regular

Context Free

Context Sensitive

Recursively Enumerable

All
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Chomsky Hierarchy and Machines

For each class one can define a corresponding class of machines.

Regular

Context Free

Context Sensitive

Recursively Enumerable

All

DFA

PDA

TM

LBA
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Regular vs. Context Free Languages

Regular Languages: Built from strings using:

1 Sequencing

2 Branching

3 Repetition

Context Free Languages: Built from strings using:

1 Sequencing

2 Branching

3 Recursion
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What stack got to do with it?
What’s a stack but a second hand memory?

1 DFA/NFA/Regular expressions.
≡ constant memory computation.

2 Turing machines DFA/NFA + unbounded memory.
≡ a standard computer/program.
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Programming Language Design

Question: What is a valid C program? Or a Python program?

Question: Given a string w what is an algorithm to check whether
w is a valid C program? The parsing problem.
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Context Free Languages and Grammars

Programming Language Specification

Parsing

Natural language understanding

Generative model giving structure

. . .

CFLs provide a good balance between expressivity and tractability.
Limited form of recursion.
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Programming Languages
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Natural Language Processing
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Models of Growth

L-systems

http://www.kevs3d.co.uk/dev/lsystems/
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Kolam drawing generated by grammar

Miller, Hassanieh (UIUC) CS374 12 Spring 2020 12 / 44



Context Free Grammar (CFG) Definition

Definition
A CFG is a quadruple G = (V ,T ,P, S)

V is a finite set of non-terminal symbols

T is a finite set of terminal symbols (alphabet)

P is a finite set of productions, each of the form
A→ α
where A ∈ V and α is a string in (V ∪ T )∗.
Formally, P ⊂ V × (V ∪ T )∗.

S ∈ V is a start symbol

G =
(

Variables, Terminals, Productions, Start var
)
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Example

V = {S}
T = {a, b}
P = {S → ε | a | b | aSa | bSb}
(abbrev. for S → ε, S → a, S → b, S → aSa, S → bSb)

S  aSa  abSba  abbSbba  abb b bba

What strings can S generate like this?
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Example formally...

V = {S}
T = {a, b}
P = {S → ε | a | b | aSa | bSb}
(abbrev. for S → ε, S → a, S → b, S → aSa, S → bSb)

G =

{S}, {a, b},


S → ε,
S → a,
S → b

S → aSa
S → bSb

 S
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Palindromes

Madam in Eden I’m Adam

Dog doo? Good God!

Dogma: I am God.

A man, a plan, a canal, Panama

Are we not drawn onward, we few, drawn onward to new era?

Doc, note: I dissent. A fast never prevents a fatness. I diet on
cod.

http://www.palindromelist.net
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Examples

L = {0n1n | n ≥ 0}

S → ε | 0S1
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Notation and Convention

Let G = (V ,T ,P, S) then

a, b, c, d , . . . , in T (terminals)

A,B,C ,D, . . . , in V (non-terminals)

u, v ,w , x, y , . . . in T ∗ for strings of terminals

α, β, γ, . . . in (V ∪ T )∗

X ,Y ,X in V ∪ T
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“Derives” relation

Formalism for how strings are derived/generated

Definition
Let G = (V ,T ,P, S) be a CFG. For strings α1, α2 ∈ (V ∪ T )∗

we say α1 derives α2 denoted by α1  G α2 if there exist strings
β, γ, δ in (V ∪ T )∗ such that

α1 = βAδ
α2 = βγδ

A→ γ is in P.

Examples: S  ε, S  0S1, 0S1  00S11, 0S1  01.
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“Derives” relation continued

Definition
For integer k ≥ 0, α1  k α2 inductive defined:

α1  0 α2 if α1 = α2

α1  k α2 if α1  β1 and β1  k−1 α2.

Alternative definition: α1  k α2 if α1  k−1 β1 and β1  α2

 ∗ is the reflexive and transitive closure of  .

α1  ∗ α2 if α1  k α2 for some k .

Examples: S  ∗ ε, 0S1  ∗ 0000011111.
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Context Free Languages

Definition
The language generated by CFG G = (V ,T ,P, S) is denoted by
L(G) where L(G) = {w ∈ T ∗ | S  ∗ w}.

Definition
A language L is context free (CFL) if it is generated by a context
free grammar. That is, there is a CFG G such that L = L(G).
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Example

L = {0n1n | n ≥ 0}

L = 0∗1∗

L = {0n1m | m > n}

L = {0n1m | m < n}

L = {0n1m | m 6= n}
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Example

L =
{
w ∈

{
(, )
}∗ ∣∣∣ w is properly nested string of parenthesis

}

L = {w ∈ {0, 1}∗ | w has equal number of 1s as 0’s}
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Closure Properties of CFLs

G1 = (V1,T ,P1, S1) and G2 = (V2,T ,P2, S2)
Assumption: V1 ∩ V2 = ∅, that is, non-terminals are not shared

Theorem
CFLs are closed under union. L1, L2 CFLs implies L1 ∪ L2 is a
CFL.

Theorem
CFLs are closed under concatenation. L1, L2 CFLs implies L1·L2

is a CFL.

Theorem
CFLs are closed under Kleene star.
If L is a CFL =⇒ L∗ is a CFL.
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Closure Properties of CFLs
Union

G1 = (V1,T ,P1, S1) and G2 = (V2,T ,P2, S2)
Assumption: V1 ∩ V2 = ∅, that is, non-terminals are not shared.
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Closure Properties of CFLs
Concatenation

Theorem
CFLs are closed under concatenation. L1, L2 CFLs implies L1·L2

is a CFL.
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Closure Properties of CFLs
Stardom (i.e, Kleene star)

Theorem
CFLs are closed under Kleene star.
If L is a CFL =⇒ L∗ is a CFL.
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Exercise

Prove that every regular language is context-free using previous
closure properties.

Prove the set of regular expressions over an alphabet Σ forms a
non-regular language which is context-free.

Miller, Hassanieh (UIUC) CS374 28 Spring 2020 28 / 44



Closure Properties of CFLs continued

Theorem
CFLs are not closed under complement or intersection.

Theorem
If L1 is a CFL and L2 is regular then L1 ∩ L2 is a CFL.
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Canonical non-CFL

Theorem
L = {anbncn | n ≥ 0} is not context-free.

Proof based on pumping lemma for CFLs. Technical and outside
the scope of this class.
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Parse Trees or Derivation Trees

A tree to represent the derivation S  ∗ w .

Rooted tree with root labeled S
Non-terminals at each internal node of tree

Terminals at leaves

Children of internal node indicate how non-terminal was
expanded using a production rule

A picture is worth a thousand words
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Example

S	à aSb | bSa | SS	| ab| ba |	ε

S è aSb è abSab è abSSab è abbaSab è abbaab

A corresponding derivation of abbaab

S

S ba

S ab

S S

b a ε

A derivation tree for abbaab
(also called “parse tree”)
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Ambiguity in CFLs

Definition
A CFG G is ambiguous if there is a string w ∈ L(G) with two
different parse trees. If there is no such string then G is
unambiguous.

Example: S → S − S | 1 | 2 | 3

S

S

S

S– – SS

–S S–S S3

2 1 3 2

1

3–(2–1) (3–2)–1 
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Ambiguity in CFLs

Original grammar: S → S − S | 1 | 2 | 3
Unambiguous grammar:
S → S − C | 1 | 2 | 3
C → 1 | 2 | 3

S

S – C

–S C

3 2

1

(3–2)–1 

The grammar forces a parse 
corresponding to  left-to-right 
evaluation.
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Inherently ambiguous languages

Definition
A CFL L is inherently ambiguous if there is no unambiguous CFG
G such that L = L(G).

There exist inherently ambiguous CFLs.
Example: L = {anbmck | n = m or m = k}
Given a grammar G it is undecidable to check whether L(G) is
inherently ambiguous. No algorithm!
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Inductive proofs for CFGs

Question: How do we formally prove that a CFG L(G) = L?

Example: S → ε | a | b | aSa | bSb

Theorem
L(G) = {palindromes} = {w | w = wR}

Two directions:

L(G) ⊆ L, that is, S  ∗ w then w = wR

L ⊆ L(G), that is, w = wR then S  ∗ w
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L(G) ⊆ L

Show that if S  ∗ w then w = wR

By induction on length of derivation, meaning
For all k ≥ 1, S  ∗k w implies w = wR .

If S  1 w then w = ε or w = a or w = b. Each case
w = wR .

Assume that for all k < n, that if S →k w then w = wR

Let S  n w (with n > 1). Wlog w begin with a.

Then S → aSa  k−1 aua where w = aua.
And S  n−1 u and hence IH, u = uR .
Therefore w r = (aua)R = (ua)Ra = auRa = aua = w .
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L ⊆ L(G)

Show that if w = wR then S  ∗ w .

By induction on |w |
That is, for all k ≥ 0, |w | = k and w = wR implies S  ∗ w .

Exercise: Fill in proof.
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Mutual Induction

Situation is more complicated with grammars that have multiple
non-terminals.

See Section 5.3.2 of the notes for an example proof.
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Normal Forms

Normal forms are a way to restrict form of production rules

Advantage: Simpler/more convenient algorithms and proofs

Two standard normal forms for CFGs

Chomsky normal form

Greibach normal form
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Normal Forms

Chomsky Normal Form:

Productions are all of the form A→ BC or A→ a.
If ε ∈ L then S → ε is also allowed.

Every CFG G can be converted into CNF form via an efficient
algorithm

Advantage: parse tree of constant degree.

Greibach Normal Form:

Only productions of the form A→ aβ are allowed.

All CFLs without ε have a grammar in GNF. Efficient
algorithm.

Advantage: Every derivation adds exactly one terminal.
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Language recognition for CFLs

Algorithmic question: Given CFG G and string w ∈ Σ∗ is
w ∈ L(G)?

Later in course: algorithm for above problem that runs in O(|w |3)
time for any fixed grammar G . Via dynamic programming.

Hence parsing problem for programming languages is solvable.
However cubic time algorithm is too slow! For this reason grammars
for PLs are restricted even further to make parsing algorithm faster
(essentially linear time) — see CS 421 and compiler courses.

In programming languages some amount of “context” may be
necessary. But CSL recognition is undecidable (no algorithm)! Hence
people use ad hoc methods for the limited needs in PLs.
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Things to know: Pushdown Automata

PDA: a NFA coupled with a stack

PDAs and CFGs are equivalent: both generate exactly CFLs.
PDA is a machine-centric view of CFLs.
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Chomsky Hierarchy

See Wikipedia article for more on Chomsky Hierarchy including the
grammar rules for Context Sensitive Languages etc.
https://en.wikipedia.org/wiki/Chomsky_hierarchy
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