Algorithms \& Models of Computation

 CS/ECE 374 B, Spring 2020
Context Free Languages and Grammars

Lecture 7

Wednesday, February 12, 2020

Regular Languages

- Regular expressions allow us to describe/express a class of languages compactly and precisely.
- Equivalence with DFAs show the following: given any regular expression r there is a very efficient algorithm for solving the language recognition problem for $\boldsymbol{L}(\boldsymbol{r})$: given $\boldsymbol{w} \in \boldsymbol{\Sigma}^{*}$ is $w \in L(r) ?$

Regular Languages

- Regular expressions allow us to describe/express a class of languages compactly and precisely.
- Equivalence with DFAs show the following: given any regular expression r there is a very efficient algorithm for solving the language recognition problem for $\boldsymbol{L}(\boldsymbol{r})$: given $\boldsymbol{w} \in \boldsymbol{\Sigma}^{*}$ is $w \in L(r)$? In fact the running time of the algorithm is linear in $|w|$.

Regular Languages

- Regular expressions allow us to describe/express a class of languages compactly and precisely.
- Equivalence with DFAs show the following: given any regular expression r there is a very efficient algorithm for solving the language recognition problem for $L(\boldsymbol{r})$: given $\boldsymbol{w} \in \boldsymbol{\Sigma}^{*}$ is $w \in L(r)$? In fact the running time of the algorithm is linear in $|w|$.

Disadvantage of regular expressions/languages:

Regular Languages

- Regular expressions allow us to describe/express a class of languages compactly and precisely.
- Equivalence with DFAs show the following: given any regular expression r there is a very efficient algorithm for solving the language recognition problem for $L(\boldsymbol{r})$: given $\boldsymbol{w} \in \boldsymbol{\Sigma}^{*}$ is $w \in L(r)$? In fact the running time of the algorithm is linear in $|w|$.

Disadvantage of regular expressions/languages: too simple and cannot express interesting features such as balanced parenthesis that we need in programming languages. No recursion allowed even in limited form.

Language classes: Chomsky Hierarchy

Generative models for languages based on grammars.

Chomsky Hierarchy and Machines

For each class one can define a corresponding class of machines.

Regular vs. Context Free Languages

Regular Languages: Built from strings using:
(1) Sequencing
(2) Branching
(0) Repetition

Regular vs. Context Free Languages

Regular Languages: Built from strings using:
(1) Sequencing
(2) Branching
(0) Repetition

Context Free Languages: Built from strings using:
(1) Sequencing
(2) Branching

- Recursion

What stack got to do with it?

 What's a stack but a second hand memory?(1) DFA/NFA/Regular expressions. \equiv constant memory computation.
(2) Turing machines DFA/NFA + unbounded memory. \equiv a standard computer/program.

What stack got to do with it?

 What's a stack but a second hand memory?(1) DFA/NFA/Regular expressions. \equiv constant memory computation.
(2) NFA + stack \equiv context free grammars (CFG).
(3) Turing machines DFA/NFA + unbounded memory. \equiv a standard computer/program.

What stack got to do with it?

 What's a stack but a second hand memory?(1) DFA/NFA/Regular expressions.
\equiv constant memory computation.
(2) NFA + stack
\equiv context free grammars (CFG).
(3) Turing machines DFA/NFA + unbounded memory.
\equiv a standard computer/program.
\equiv NFA with two stacks.

Programming Language Design

Question: What is a valid C program? Or a Python program?
Question: Given a string w what is an algorithm to check whether w is a valid C program? The parsing problem.

Context Free Languages and Grammars

- Programming Language Specification
- Parsing
- Natural language understanding
- Generative model giving structure

CFLs provide a good balance between expressivity and tractability. Limited form of recursion.

Programming Languages

<relational-expression> $::=$ <shift-expression> $\qquad \|$<relational-expression> \llshift-expression> <relational-expression\gg <shift-expression> <relational-expression> <= <shift-expression> <relational-expression\gg \llshift-expression>
```<shift-expression> ::= <additive-expression> <shift-expression> << <additive-expression> <shift-expression> >> <additive-expression>```
$\begin{aligned} & \text { <additive-expression> }::=\mid \text { <multiplicative-expression> } \\ & \mid \text { <additive-expression> + <multiplicative-expression> } \\ & \text { <additive-expression> - <multiplicative-expression> } \end{aligned}$
<multiplicative-expression> : $:=$ <cast-expression>$\|$<multiplicative-expression> * <cast-expression>   <multiplicative-expression> / <cast-expression>   <multiplicative-expression> of <cast-expression>
```<cast-expression> ::= <unary-expression>```
<unary-expression> ::= <postfix-expression> $\|$++ <unary-expression> -- <unary-expression> <unary-operator> <cast-expression> sizeof <unary-expression> sizeof <type-name>

Natural Language Processing

English sentences can be described as

$$
\begin{aligned}
& \langle S\rangle \rightarrow\langle N P\rangle\langle V P\rangle \\
& \langle N P\rangle \rightarrow\langle C N\rangle \mid\langle C N\rangle\langle P P\rangle \\
& \langle V P\rangle \rightarrow\langle C V\rangle \mid\langle C V\rangle\langle P P\rangle \\
& \langle P P\rangle \rightarrow\langle P\rangle\langle C N\rangle \\
& \langle C N\rangle \rightarrow\langle A\rangle\langle N\rangle \\
& \langle C V\rangle \rightarrow\langle V\rangle \mid\langle V\rangle\langle N P\rangle \\
& \langle A\rangle \rightarrow \text { a } \mid \text { the } \\
& \langle N\rangle \rightarrow \text { boy } \mid \text { girl } \mid \text { flower } \\
& \langle V\rangle \rightarrow \text { touches } \mid \text { likes } \mid \text { sees } \\
& \langle P\rangle \rightarrow \text { with }
\end{aligned}
$$

English Sentences
Examples

$$
\begin{aligned}
& \overbrace{\underbrace{\text { noun-phrs }}_{\text {article }} \underbrace{\text { boy }}_{\text {noun }}}^{\text {noun }} \overbrace{\underbrace{\text { sees }}_{\text {verb }}}^{\text {verb-phrs }} \\
& \overbrace{\underbrace{\text { the }}_{\text {article }} \underbrace{\text { boy }}_{\text {noum }}}^{\text {noun-phrs }} \text { sees } \underbrace{\text { verb-phrs flower }}_{\text {verb noun-phrs }}
\end{aligned}
$$

Models of Growth

- L-systems
- http://www.kevs3d.co.uk/dev/lsystems/

Kolam drawing generated by grammar

Context Free Grammar (CFG) Definition

Definition

A CFG is a quadruple $G=(V, T, P, S)$

- V is a finite set of non-terminal symbols
$G=($ Variables, Terminals, Productions, Start var $)$

Context Free Grammar (CFG) Definition

Definition

A CFG is a quadruple $G=(V, T, P, S)$

- \boldsymbol{V} is a finite set of non-terminal symbols
- \boldsymbol{T} is a finite set of terminal symbols (alphabet)
$\boldsymbol{G}=($ Variables, Terminals, Productions, Start var $)$

Context Free Grammar (CFG) Definition

Definition

A CFG is a quadruple $G=(V, T, P, S)$

- V is a finite set of non-terminal symbols
- \boldsymbol{T} is a finite set of terminal symbols (alphabet)
- P is a finite set of productions, each of the form
$A \rightarrow \alpha$
where $A \in V$ and α is a string in $(V \cup T)^{*}$.
Formally, $P \subset V \times(V \cup T)^{*}$.
$\boldsymbol{G}=($ Variables, Terminals, Productions, Start var $)$

Context Free Grammar (CFG) Definition

Definition

A CFG is a quadruple $G=(V, T, P, S)$

- V is a finite set of non-terminal symbols
- \boldsymbol{T} is a finite set of terminal symbols (alphabet)
- P is a finite set of productions, each of the form
$A \rightarrow \alpha$
where $A \in V$ and α is a string in $(V \cup T)^{*}$.
Formally, $P \subset V \times(V \cup T)^{*}$.
- $S \in V$ is a start symbol
$\boldsymbol{G}=($ Variables, Terminals, Productions, Start var $)$

Example

- $V=\{S\}$
- $T=\{a, b\}$
- $P=\{S \rightarrow \epsilon|a| b|a S a| b S b\}$
(abbrev. for $S \rightarrow \epsilon, S \rightarrow a, S \rightarrow b, S \rightarrow a S a, S \rightarrow b S b$)

Example

- $V=\{S\}$
- $T=\{a, b\}$
- $P=\{S \rightarrow \epsilon|a| b|a S a| b S b\}$ (abbrev. for $S \rightarrow \epsilon, S \rightarrow a, S \rightarrow b, S \rightarrow a S a, S \rightarrow b S b$)
$S \rightsquigarrow a S a \rightsquigarrow a b S b a \rightsquigarrow a b b S b b a \rightsquigarrow a b b b b b a$

Example

- $V=\{S\}$
- $T=\{a, b\}$
- $P=\{S \rightarrow \epsilon|a| b|a S a| b S b\}$ (abbrev. for $S \rightarrow \epsilon, S \rightarrow a, S \rightarrow b, S \rightarrow a S a, S \rightarrow b S b$)

$S \rightsquigarrow a S a \rightsquigarrow a b S b a \rightsquigarrow a b b S b b a \rightsquigarrow a b b b b a$

What strings can S generate like this?

Example formally...

- $V=\{S\}$
- $T=\{a, b\}$
- $P=\{S \rightarrow \epsilon|a| b|a S a| b S b\}$
(abbrev. for $S \rightarrow \epsilon, S \rightarrow a, S \rightarrow b, S \rightarrow a S a, S \rightarrow b S b$)

$$
G=\left(\begin{array}{ll}
\{S\}, & \{a, b\},
\end{array} \quad\left\{\begin{array}{c}
S \rightarrow \epsilon, \\
S \rightarrow a, \\
S \rightarrow b \\
S \rightarrow a S a \\
S \rightarrow b S b
\end{array}\right\} \quad S\right.
$$

Palindromes

- Madam in Eden I'm Adam
- Dog doo? Good God!
- Dogma: I am God.
- A man, a plan, a canal, Panama
- Are we not drawn onward, we few, drawn onward to new era?
- Doc, note: I dissent. A fast never prevents a fatness. I diet on cod.
- http://www.palindromelist.net

Examples

$$
L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}
$$

Examples

$$
L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}
$$

$S \rightarrow \epsilon \mid 0 S 1$

Notation and Convention

Let $G=(V, T, P, S)$ then

- a, b, c, d, \ldots, in T (terminals)
- A, B, C, D, \ldots, in V (non-terminals)
- u, v, w, x, y, \ldots in T^{*} for strings of terminals
- $\alpha, \beta, \gamma, \ldots$ in $(V \cup T)^{*}$
- X, Y, X in $V \cup T$

"Derives" relation

Formalism for how strings are derived/generated

```
Definition
Let \(G=(V, T, P, S)\) be a CFG. For strings \(\alpha_{1}, \alpha_{2} \in(V \cup T)^{*}\) we say \(\alpha_{1}\) derives \(\alpha_{2}\) denoted by \(\alpha_{1} \rightsquigarrow_{G} \alpha_{2}\) if there exist strings \(\boldsymbol{\beta}, \gamma, \delta\) in \((V \cup T)^{*}\) such that
- \(\alpha_{1}=\beta A \delta\)
- \(\alpha_{2}=\beta \gamma \delta\)
- \(A \rightarrow \gamma\) is in \(P\).
```

Examples: $S \rightsquigarrow \epsilon, S \rightsquigarrow 0 S 1,0 S 1 \rightsquigarrow 00 S 11,0 S 1 \rightsquigarrow 01$.

"Derives" relation continued

Definition

For integer $k \geq \mathbf{0}, \boldsymbol{\alpha}_{\mathbf{1}} \rightsquigarrow^{k} \boldsymbol{\alpha}_{\mathbf{2}}$ inductive defined:

- $\alpha_{1} \rightsquigarrow^{0} \alpha_{2}$ if $\alpha_{1}=\alpha_{2}$
- $\alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ if $\alpha_{1} \rightsquigarrow \beta_{1}$ and $\beta_{1} \rightsquigarrow^{k-1} \alpha_{2}$.

"Derives" relation continued

Definition

For integer $k \geq \mathbf{0}, \boldsymbol{\alpha}_{\mathbf{1}} \rightsquigarrow^{k} \boldsymbol{\alpha}_{\mathbf{2}}$ inductive defined:

- $\alpha_{1} \rightsquigarrow^{0} \alpha_{2}$ if $\alpha_{1}=\alpha_{2}$
- $\alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ if $\alpha_{1} \rightsquigarrow \beta_{1}$ and $\beta_{1} \rightsquigarrow^{k-1} \alpha_{2}$.
- Alternative definition: $\alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ if $\alpha_{1} \rightsquigarrow^{k-1} \beta_{1}$ and $\beta_{1} \rightsquigarrow \alpha_{2}$

"Derives" relation continued

Definition

For integer $k \geq \mathbf{0}, \boldsymbol{\alpha}_{\mathbf{1}} \rightsquigarrow^{k} \boldsymbol{\alpha}_{\mathbf{2}}$ inductive defined:

- $\alpha_{1} \rightsquigarrow^{0} \alpha_{2}$ if $\alpha_{1}=\alpha_{2}$
- $\alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ if $\alpha_{1} \rightsquigarrow \beta_{1}$ and $\beta_{1} \rightsquigarrow^{k-1} \alpha_{2}$.
- Alternative definition: $\alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ if $\alpha_{1} \rightsquigarrow^{k-1} \beta_{1}$ and $\beta_{1} \rightsquigarrow \alpha_{2}$
\sim_{*}^{*} is the reflexive and transitive closure of \rightsquigarrow.
$\alpha_{1} \rightsquigarrow^{*} \alpha_{2}$ if $\alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ for some k.

Examples: $S \leadsto \sim_{*}^{*} \epsilon, 0 S 1 \leadsto * 0000011111$.

Context Free Languages

Definition

The language generated by CFG $G=(V, T, P, S)$ is denoted by $L(G)$ where $L(G)=\left\{w \in T^{*} \mid S \rightsquigarrow^{*} w\right\}$.

Context Free Languages

Definition

The language generated by CFG $G=(V, T, P, S)$ is denoted by $L(G)$ where $L(G)=\left\{w \in T^{*} \mid S \rightsquigarrow^{*} w\right\}$.

Definition

A language L is context free (CFL) if it is generated by a context free grammar. That is, there is a CFG G such that $L=L(G)$.

Example

$$
L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}
$$

Example

$$
\begin{aligned}
& L=\left\{0^{n} 1^{n} \mid n \geq 0\right\} \\
& L=0^{*} 1^{*}
\end{aligned}
$$

Example

$$
L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}
$$

$$
L=0^{*} 1^{*}
$$

$$
L=\left\{0^{n} 1^{m} \mid m>n\right\}
$$

Example

$L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
$L=0^{*} 1^{*}$
$L=\left\{0^{n} 1^{m} \mid m>n\right\}$
$L=\left\{0^{n} 1^{m} \mid m<n\right\}$

Example

$$
\begin{aligned}
& L=\left\{0^{n} 1^{n} \mid n \geq 0\right\} \\
& L=0^{*} 1^{*}
\end{aligned}
$$

$$
L=\left\{0^{n} 1^{m} \mid m>n\right\}
$$

$$
L=\left\{0^{n} 1^{m} \mid m<n\right\}
$$

$$
L=\left\{0^{n} 1^{m} \mid m \neq n\right\}
$$

Example

$L=\left\{w \in\{(,)\}^{*} \mid w\right.$ is properly nested string of parenthesis $\}$

Example

$L=\left\{w \in\{(,)\}^{*} \mid w\right.$ is properly nested string of parenthesis $\}$
$L=\left\{w \in\{\mathbf{0}, \mathbf{1}\}^{*} \mid w\right.$ has equal number of $\mathbf{1 s}$ as $\mathbf{0}$'s $\}$

Closure Properties of CFLS

$G_{1}=\left(V_{1}, T, P_{1}, S_{1}\right)$ and $G_{2}=\left(V_{2}, T, P_{2}, S_{2}\right)$
Assumption: $V_{1} \cap V_{2}=\emptyset$, that is, non-terminals are not shared

Closure Properties of CFLS

$G_{1}=\left(V_{1}, T, P_{1}, S_{1}\right)$ and $G_{2}=\left(V_{2}, T, P_{2}, S_{2}\right)$
Assumption: $V_{1} \cap V_{2}=\emptyset$, that is, non-terminals are not shared

Theorem

CFLS are closed under union. L_{1}, L_{2} CFLS implies $L_{1} \cup L_{2}$ is a CFL.

Theorem

CFLs are closed under concatenation. L_{1}, L_{2} CFLS implies $L_{1} \cdot L_{2}$ is a CFL.

Theorem

CFLs are closed under Kleene star. If L is a CFL $\Longrightarrow L^{*}$ is a CFL.

Closure Properties of CFLS

Union

$G_{1}=\left(V_{1}, T, P_{1}, S_{1}\right)$ and $G_{2}=\left(V_{2}, T, P_{2}, S_{2}\right)$
Assumption: $V_{1} \cap V_{2}=\emptyset$, that is, non-terminals are not shared.

Theorem

CFLS are closed under union. L_{1}, L_{2} CFLs implies $L_{1} \cup L_{2}$ is a CFL.

Closure Properties of CFLS

Concatenation

Theorem
 CFLS are closed under concatenation. L_{1}, L_{2} CFLS implies $L_{1} \bullet L_{2}$ is a CFL.

Closure Properties of CFLS

Stardom (i.e, Kleene star)

Theorem
 CFLS are closed under Kleene star. If L is a CFL $\Longrightarrow L^{*}$ is a CFL.

Exercise

- Prove that every regular language is context-free using previous closure properties.
- Prove the set of regular expressions over an alphabet $\boldsymbol{\Sigma}$ forms a non-regular language which is context-free.

Closure Properties of CFLS continued

Theorem
 CFLS are not closed under complement or intersection.

```
Theorem
If L}\mp@subsup{L}{1}{}\mathrm{ is a CFL and }\mp@subsup{L}{2}{}\mathrm{ is regular then }\mp@subsup{L}{1}{}\cap\mp@subsup{L}{2}{}\mathrm{ is a CFL.
```


Canonical non-CFL

Theorem
 $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is not context-free.

Proof based on pumping lemma for CFLs. Technical and outside the scope of this class.

Parse Trees or Derivation Trees

A tree to represent the derivation $S w^{*} w$.

- Rooted tree with root labeled S
- Non-terminals at each internal node of tree
- Terminals at leaves
- Children of internal node indicate how non-terminal was expanded using a production rule

Parse Trees or Derivation Trees

A tree to represent the derivation $S \sim_{*}^{*} w$.

- Rooted tree with root labeled S
- Non-terminals at each internal node of tree
- Terminals at leaves
- Children of internal node indicate how non-terminal was expanded using a production rule

A picture is worth a thousand words

Example

Ambiguity in CFLS

Definition

A CFG G is ambiguous if there is a string $w \in L(G)$ with two different parse trees. If there is no such string then G is unambiguous.

Example: $S \rightarrow S-S|1| 2 \mid 3$

$$
3-(2-1) \quad(3-2)-1
$$

Ambiguity in CFLS

- Original grammar: $S \rightarrow S-S|1| 2 \mid 3$
- Unambiguous grammar: $S \rightarrow S-C|1| 2 \mid 3$ $C \rightarrow 1|2| 3$

The grammar forces a parse corresponding to left-to-right evaluation.

Inherently ambiguous languages

Definition

A CFL L is inherently ambiguous if there is no unambiguous CFG G such that $L=L(G)$.

Inherently ambiguous languages

Definition

A CFL L is inherently ambiguous if there is no unambiguous CFG G such that $L=L(G)$.

- There exist inherently ambiguous CFLs.

Example: $L=\left\{a^{n} b^{m} c^{k} \mid n=m\right.$ or $\left.m=k\right\}$

Inherently ambiguous languages

Definition

A CFL L is inherently ambiguous if there is no unambiguous CFG G such that $L=L(G)$.

- There exist inherently ambiguous CFLs.

Example: $L=\left\{a^{n} b^{m} c^{k} \mid n=m\right.$ or $\left.m=k\right\}$

- Given a grammar G it is undecidable to check whether $L(G)$ is inherently ambiguous. No algorithm!

Inductive proofs for CFGS

Question: How do we formally prove that a $\operatorname{CFG} L(G)=L$?
Example: $S \rightarrow \epsilon|a| b|a S a| b S b$
Theorem
$L(G)=\{$ palindromes $\}=\left\{w \mid w=w^{R}\right\}$

Inductive proofs for CFGS

Question: How do we formally prove that a $\operatorname{CFG} L(G)=L$?
Example: $S \rightarrow \epsilon|a| b|a S a| b S b$
Theorem
$L(G)=\{$ palindromes $\}=\left\{w \mid w=w^{R}\right\}$
Two directions:

- $L(G) \subseteq L$, that is, $S \sim_{*}^{*} w$ then $w=w^{R}$
- $L \subseteq L(G)$, that is, $w=w^{R}$ then $S w^{*} w$

$L(G) \subseteq L$

Show that if $S w^{*} w$ then $w=w^{R}$

By induction on length of derivation, meaning For all $k \geq 1, S \mathfrak{w}^{* k} w$ implies $w=w^{R}$.

$\mathrm{L}(\mathrm{G}) \subseteq \mathrm{L}$

Show that if $S w^{*} w$ then $w=w^{R}$
By induction on length of derivation, meaning For all $k \geq 1, S{w^{* k}}^{*}$ implies $w=w^{R}$.

- If $S w^{1} w$ then $w=\epsilon$ or $w=a$ or $w=b$. Each case $w=w^{R}$.
- Assume that for all $k<n$, that if $S \rightarrow^{k} w$ then $w=w^{R}$
- Let $S w^{n} w$ (with $n>1$). Wlog w begin with a.
- Then $S \rightarrow a S a m^{k-1}$ aua where $w=a u a$.
- And $\boldsymbol{S} \rightsquigarrow^{n-1} \boldsymbol{u}$ and hence $\mathrm{HH}, \boldsymbol{u}=\boldsymbol{u}^{R}$.
- Therefore $w^{r}=(a u a)^{R}=(u a)^{R} a=a u^{R} a=a u a=w$.

$L \subseteq L(G)$

Show that if $w=w^{R}$ then $S w^{*} w$.
By induction on $|w|$
That is, for all $k \geq 0,|w|=k$ and $w=w^{R}$ implies $S \sim^{*} w$.
Exercise: Fill in proof.

Mutual Induction

Situation is more complicated with grammars that have multiple non-terminals.

See Section 5.3.2 of the notes for an example proof.

Normal Forms

Normal forms are a way to restrict form of production rules
Advantage: Simpler/more convenient algorithms and proofs

Normal Forms

Normal forms are a way to restrict form of production rules

Advantage: Simpler/more convenient algorithms and proofs

Two standard normal forms for CFGs

- Chomsky normal form
- Greibach normal form

Normal Forms

Chomsky Normal Form:

- Productions are all of the form $\boldsymbol{A} \rightarrow \boldsymbol{B C}$ or $\boldsymbol{A} \rightarrow \boldsymbol{a}$.

If $\epsilon \in L$ then $S \rightarrow \epsilon$ is also allowed.

- Every CFG G can be converted into CNF form via an efficient algorithm
- Advantage: parse tree of constant degree.

Normal Forms

Chomsky Normal Form:

- Productions are all of the form $\boldsymbol{A} \rightarrow \boldsymbol{B C}$ or $\boldsymbol{A} \rightarrow \boldsymbol{a}$. If $\epsilon \in L$ then $S \rightarrow \epsilon$ is also allowed.
- Every CFG G can be converted into CNF form via an efficient algorithm
- Advantage: parse tree of constant degree.

Greibach Normal Form:

- Only productions of the form $\boldsymbol{A} \rightarrow \boldsymbol{a} \boldsymbol{\beta}$ are allowed.
- All CFLs without ϵ have a grammar in GNF. Efficient algorithm.
- Advantage: Every derivation adds exactly one terminal.

Language recognition for CFLs

Algorithmic question: Given CFG G and string $w \in \boldsymbol{\Sigma}^{*}$ is $w \in L(G)$?

Language recognition for CFLs

Algorithmic question: Given CFG G and string $w \in \boldsymbol{\Sigma}^{*}$ is $w \in L(G)$?

Later in course: algorithm for above problem that runs in $O\left(|w|^{3}\right)$ time for any fixed grammar G. Via dynamic programming.

Hence parsing problem for programming languages is solvable. However cubic time algorithm is too slow! For this reason grammars for PLs are restricted even further to make parsing algorithm faster (essentially linear time) - see CS 421 and compiler courses.

In programming languages some amount of "context" may be necessary. But CSL recognition is undecidable (no algorithm)! Hence people use ad hoc methods for the limited needs in PLs.

Things to know: Pushdown Automata

PDA: a NFA coupled with a stack

PDAs and CFGs are equivalent: both generate exactly CFLs. PDA is a machine-centric view of CFLs.

Chomsky Hierarchy

See Wikipedia article for more on Chomsky Hierarchy including the grammar rules for Context Sensitive Languages etc.
https://en.wikipedia.org/wiki/Chomsky_hierarchy

