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Recursion

Reduction:
Reduce one problem to another

Recursion
A special case of reduction

1 reduce problem to a smaller instance of itself

2 self-reduction

1 Problem instance of size n is reduced to one or more instances
of size n − 1 or less.

2 For termination, problem instances of small size are solved by
some other method as base cases.
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Recursion in Algorithm Design

1 Tail Recursion: problem reduced to a single recursive call after
some work. Easy to convert algorithm into iterative or greedy
algorithms. Examples: Interval scheduling, MST algorithms, etc.

2 Divide and Conquer: Problem reduced to multiple
independent sub-problems that are solved separately. Conquer
step puts together solution for bigger problem.

Examples: Closest pair, deterministic median selection, quick
sort.

3 Backtracking: Refinement of brute force search. Build solution
incrementally by invoking recursion to try all possibilities for the
decision in each step.

4 Dynamic Programming: problem reduced to multiple
(typically) dependent or overlapping sub-problems. Use
memoization to avoid recomputation of common solutions
leading to iterative bottom-up algorithm.
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Part I

Brute Force Search, Recursion and
Backtracking
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Maximum Independent Set in a Graph

Definition
Given undirected graph G = (V ,E) a subset of nodes S ⊆ V is an
independent set (also called a stable set) if for there are no edges
between nodes in S . That is, if u, v ∈ S then (u, v) 6∈ E .

A

B

C

DE

F

Some independent sets in graph above: {D}, {A,C}, {B,E ,F}
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Maximum Independent Set Problem

Input Graph G = (V ,E)

Goal Find maximum sized independent set in G
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Maximum Weight Independent Set Problem

Input Graph G = (V ,E), weights w(v) ≥ 0 for v ∈ V
Goal Find maximum weight independent set in G
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Maximum Weight Independent Set Problem

1 No one knows an efficient (polynomial time) algorithm for this
problem

2 Problem is NP-Complete and it is believed that there is no
polynomial time algorithm

Brute-force algorithm:
Try all subsets of vertices.
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Brute-force enumeration

Algorithm to find the size of the maximum weight independent set.

MaxIndSet(G = (V ,E)):
max = 0
for each subset S ⊆ V do

check if S is an independent set

if S is an independent set and w(S) > max then
max = w(S)

Output max

Running time: suppose G has n vertices and m edges

1 2n subsets of V
2 checking each subset S takes O(m) time

3 total time is O(m2n)
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A Recursive Algorithm

Let V = {v1, v2, . . . , vn}.
For a vertex u let N(u) be its neighbors.

Observation
v1: vertex in the graph.
One of the following two cases is true

Case 1 v1 is in some maximum independent set.

Case 2 v1 is in no maximum independent set.

We can try both cases to “reduce” the size of the problem

G1 = G − v1 obtained by removing v1 and incident edges from G
G2 = G − v1 − N(v1) obtained by removing N(v1) ∪ v1 from G

MIS(G) = max{MIS(G1),MIS(G2) + w(v1)}
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A Recursive Algorithm

RecursiveMIS(G):

if G is empty then Output 0
a = RecursiveMIS(G − v1)

b = w(v1) + RecursiveMIS(G − v1 − N(vn))
Output max(a, b)
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Example
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Recursive Algorithms
..for Maximum Independent Set

Running time:

T (n) = T (n − 1) + T
(
n − 1− deg(v1)

)
+ O(1 + deg(v1))

where deg(v1) is the degree of v1. T (0) = T (1) = 1 is base case.

Worst case is when deg(v1) = 0 when the recurrence becomes

T (n) = 2T (n − 1) + O(1)

Solution to this is T (n) = O(2n).
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Backtrack Search via Recursion

1 Recursive algorithm generates a tree of computation where each
node is a smaller problem (subproblem)

2 Simple recursive algorithm computes/explores the whole tree
blindly in some order.

3 Backtrack search is a way to explore the tree intelligently to
prune the search space

1 Some subproblems may be so simple that we can stop the
recursive algorithm and solve it directly by some other method

2 Memoization to avoid recomputing same problem
3 Stop the recursion at a subproblem if it is clear that there is no

need to explore further.
4 Leads to a number of heuristics that are widely used in practice

although the worst case running time may still be exponential.
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Sequences

Definition
Sequence: an ordered list a1, a2, . . . , an. Length of a sequence is
number of elements in the list.

Definition
ai1, . . . , aik is a subsequence of a1, . . . , an if
1 ≤ i1 < i2 < . . . < ik ≤ n.

Definition
A sequence is increasing if a1 < a2 < . . . < an. It is
non-decreasing if a1 ≤ a2 ≤ . . . ≤ an. Similarly decreasing and
non-increasing.
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Sequences
Example...

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1, 9

2 Subsequence of above sequence: 5, 2, 1

3 Increasing sequence: 3, 5, 9, 17, 54

4 Decreasing sequence: 34, 21, 7, 5, 1

5 Increasing subsequence of the first sequence: 2, 7, 9.
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Longest Increasing Subsequence Problem

Input A sequence of numbers a1, a2, . . . , an

Goal Find an increasing subsequence ai1, ai2, . . . , aik of
maximum length

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1

2 Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc

3 Longest increasing subsequence: 3, 5, 7, 8
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Näıve Enumeration

Assume a1, a2, . . . , an is contained in an array A
algLISNaive(A[1..n]):

max = 0
for each subsequence B of A do

if B is increasing and |B| > max then
max = |B|

Output max

Running time: O(n2n).
2n subsequences of a sequence of length n and O(n) time to check
if a given sequence is increasing.
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Näıve Enumeration

Assume a1, a2, . . . , an is contained in an array A
algLISNaive(A[1..n]):

max = 0
for each subsequence B of A do

if B is increasing and |B| > max then
max = |B|

Output max

Running time: O(n2n).
2n subsequences of a sequence of length n and O(n) time to check
if a given sequence is increasing.

Miller, Hassanieh (UIUC) CS374 18 Spring 2020 18 / 38



Recursive Approach: Take 1
LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):

1 Case 1: Does not contain A[n] in which case
LIS(A[1..n]) = LIS(A[1..(n − 1)])

2 Case 2: contains A[n] in which case LIS(A[1..n]) is not so
clear.

Observation
For second case we want to find a subsequence in A[1..(n − 1)]
that is restricted to numbers less than A[n]. This suggests that a
more general problem is LIS smaller(A[1..n], x) which gives the
longest increasing subsequence in A where each number in the
sequence is less than x .
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Recursive Approach

LIS smaller(A[1..n], x) : length of longest increasing subsequence
in A[1..n] with all numbers in subsequence less than x

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n − 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n − 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)
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Example

Sequence: A[1..7] = 6, 3, 5, 2, 7, 8, 1
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Part II

Recursion and Memoization
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Fibonacci Numbers

Fibonacci numbers defined by recurrence:

F (n) = F (n − 1) + F (n − 2) and F (0) = 0,F (1) = 1.

These numbers have many interesting and amazing properties.
A journal The Fibonacci Quarterly!

1 F (n) = (φn − (1− φ)n)/
√

5 where φ is the golden ratio

(1 +
√

5)/2 ' 1.618.

2 limn→∞F (n + 1)/F (n) = φ
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How many bits?

Consider the nth Fibonacci number F (n). Writing the number F (n)
in base 2 requires

(A) Θ(n2) bits.

(B) Θ(n) bits.

(C) Θ(log n) bits.

(D) Θ(log log n) bits.
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Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F (n).

Fib(n):
if (n = 0)

return 0

else if (n = 1)
return 1

else
return Fib(n − 1) + Fib(n − 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n − 1) + T (n − 2) + 1 and T (0) = T (1) = 0

Miller, Hassanieh (UIUC) CS374 25 Spring 2020 25 / 38



Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F (n).

Fib(n):
if (n = 0)

return 0

else if (n = 1)
return 1

else
return Fib(n − 1) + Fib(n − 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n − 1) + T (n − 2) + 1 and T (0) = T (1) = 0

Miller, Hassanieh (UIUC) CS374 25 Spring 2020 25 / 38



Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F (n).

Fib(n):
if (n = 0)

return 0

else if (n = 1)
return 1

else
return Fib(n − 1) + Fib(n − 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n − 1) + T (n − 2) + 1 and T (0) = T (1) = 0

Miller, Hassanieh (UIUC) CS374 25 Spring 2020 25 / 38



Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F (n).

Fib(n):
if (n = 0)
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else if (n = 1)
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return Fib(n − 1) + Fib(n − 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n − 1) + T (n − 2) + 1 and T (0) = T (1) = 0

Roughly same as F (n)

T (n) = Θ(φn)

The number of additions is exponential in n. Can we do better?
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Recursion tree for the Recursive Fibonacci
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An iterative algorithm for Fibonacci numbers

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then
return 1

F [0] = 0
F [1] = 1
for i = 2 to n do

F [i ] = F [i − 1] + F [i − 2]
return F [n]

What is the running time of the algorithm? O(n) additions.
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What is the difference?

1 Recursive algorithm is computing the same numbers again and
again.

2 Iterative algorithm is storing computed values and building
bottom up the final value.

Memoization.

Dynamic Programming:

Finding a recursion that can be effectively/efficiently memoized.

Leads to polynomial time algorithm if number of sub-problems is
polynomial in input size.
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Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm
without explicitly doing an iterative algorithm?

Fib(n):
if (n = 0)

return 0
if (n = 1)

return 1
if (Fib(n) was previously computed)

return stored value of Fib(n)

else
return Fib(n − 1) + Fib(n − 2)

How do we keep track of previously computed values?
Two methods: explicitly and implicitly (via data structure)
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Automatic implicit memoization

Initialize a (dynamic) dictionary data structure D to empty

Fib(n):
if (n = 0)

return 0

if (n = 1)
return 1

if (n is already in D)

return value stored with n in D
val ⇐ Fib(n − 1) + Fib(n − 2)
Store (n, val) in D
return val

Use hash-table or a map to remember which values were already
computed.
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Automatic explicit memoization

1 Initialize table/array M of size n: M[i ] = −1 for
i = 0, . . . , n.

2 Resulting code:
Fib(n):

if (n = 0)
return 0

if (n = 1)
return 1

if (M[n] 6= −1) // M[n]: stored value of Fib(n)
return M[n]

M[n]⇐ Fib(n − 1) + Fib(n − 2)
return M[n]

3 Need to know upfront the number of subproblems to allocate
memory.
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Recursion tree for the memoized Fib...
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Automatic Memoization

1 Recursive version:

f (x1, x2, . . . , xd ):
CODE

2 Recursive version with memoization:

g(x1, x2, . . . , xd ):
if f already computed for (x1, x2, . . . , xd ) then

return value already computed

NEW CODE

3 NEW CODE:
1 Replaces any “return α” with
2 Remember “f (x1, . . . , xd ) = α”; return α.
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Explicit vs Implicit Memoization

1 Explicit memoization (iterative algorithm) preferred:
1 analyze problem ahead of time

2 Allows for efficient memory allocation and access.

2 Implicit (automatic) memoization:
1 problem structure or algorithm is not well understood.
2 Need to pay overhead of data-structure.
3 Functional languages (e.g., LISP) automatically do

memoization, usually via hashing based dictionaries.
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How many distinct calls?

binom(t, b) // computes
(t
b

)
if t = 0 then return 0

if b = t or b = 0 then return 1

return binom(t − 1, b − 1) + binom(t − 1, b).

How many distinct calls does binom(n, bn/2c) makes during its
recursive execution?

(A) Θ(1).

(B) Θ(n).

(C) Θ(n log n).

(D) Θ(n2).

(E) Θ
(( n

bn/2c

))
.

That is, if the algorithm calls recursively binom(17, 5) about 5000
times during the computation, we count this is a single distinct call.
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Running time of memoized binom?

D: Initially an empty dictionary.

binomM(t, b) // computes
(t
b

)
if b = t then return 1

if b = 0 then return 0

if D[t, b] is defined then return D[t, b]
D[t, b]⇐ binomM(t − 1, b − 1) + binomM(t − 1, b).
return D[t, b]

Assuming that every arithmetic operation takes O(1) time, What is
the running time of binomM(n, bn/2c)?

(A) Θ(1).

(B) Θ(n).

(C) Θ(n2).

(D) Θ
(
n3

)
.

(E) Θ
(( n

bn/2c

))
.
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Back to Fibonacci Numbers

Is the iterative algorithm a polynomial time algorithm? Does it take
O(n) time?

1 input is n and hence input size is Θ(log n)

2 output is F (n) and output size is Θ(n). Why?

3 Hence output size is exponential in input size so no polynomial
time algorithm possible!

4 Running time of iterative algorithm: Θ(n) additions but number
sizes are O(n) bits long! Hence total time is O(n2), in fact
Θ(n2). Why?
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Back to Fibonacci Numbers

Saving space. Do we need an array of n numbers? Not really.

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then
return 1

prev2 = 0
prev1 = 1
for i = 2 to n do

temp = prev1 + prev2
prev2 = prev1
prev1 = temp

return prev1
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