Minimum Spanning Trees

Thursday, April 16, 2020 3:25 PM

Algorithms for MST:

- Kruskal's
 - Process edges \(e \in E \) in order by cost.
 - Add if new edge does not form a cycle in \(T \).
 - Start with \(T \) as all dummy edges (disjoint set)

- Prim's
 - Add the smallest edge adjacent to some node in \(T \).
 - \(T \) starts as empty graph.

- Boruvka's
 - For each component \(S \) in \(T \),
 add the smallest edge adjacent to some node in \(S \).
- Trees as disjoint forests.

Cuts: a partition into two of V
such that
$$S \subseteq V$$
and
$$V \setminus S = \emptyset$$

Cut edges:
$$(u, v)$$

Safe edges:

e is safe if e is the smallest
edge of some cut

Cut property: If e is safe then it
is in every MST for G.

Proof: Assume e is safe.

Suppose T is an MST.
and for contradiction, $e \notin T$.

T:

e is safe reen. If some S, $$V \setminus S \text{ cut,}$$
s.t. e is min cut edge

T is a tree, so => unique path from
$u \to w$ in T.

https://onedrive.live.com/redir?resid=D2ECBD89F9DF77E%21110&par...
Let \(e' = (v, w') \) be the first edge on this path, \(v \sim w \).

- \(e' \) is safe; \(e \prec e' \).
- Look \(T' = T \cup \{e'\} \).

- \(T' \) is still a spanning tree.
- For \(u, x \in G \), path \(u \rightarrow x \in T' \).
- \(u \rightarrow w' \rightarrow x \in T' \) is a spanning tree.

Reducing non-unique to unique.

Some edges could neither be safe nor unsafe.

- \(e \) safe \(\implies\) every MST has \(e \).
- \(e \) unsafe \(\implies\) no MST has \(e \).

Claim: if edge weights are unique, every edge is either safe or unsafe.

Consider: unique edge weights \(\implies\) exactly one MST.

Ex. 1 2 3 3 4

1.001 2.002 3.003 3.004 4.005...

Running Time:

Borůvka's alg:

- In each iteration:
 - merge each CC with one neighbor,
 - \(\Rightarrow \) \# of CC's cut in half each time.
$\log_2 n \leq \log m$ in each step.

- Find all edges $O(mn)$
- Sort all edges $O(n \log m) \log n$

Prim's: just like Dijkstra's

\mathcal{O}(sort) $O(m + n \log n)$

Kruskal's: union-find $O((n + m) \log m)$

<table>
<thead>
<tr>
<th>Prim</th>
<th>Dijkstra</th>
<th>Kruskal</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n \log n$</td>
<td>$n \log n$</td>
<td>$n \log n$</td>
</tr>
<tr>
<td>$m \log n$</td>
<td>$m \log n$</td>
<td>$m \log n$</td>
</tr>
<tr>
<td>$(mn) \log n$</td>
<td>$(mn) \log n$</td>
<td>$(mn) \log n$</td>
</tr>
</tbody>
</table>

$m = O(n)$

$m = O(n^2)$

- n^2
- $n \log n$
- $n \log n$