Regular Languages and Expressions

Lecture 2
Friday, January 24, 2020
Part I

Regular Languages
Regular Languages

A class of simple but useful languages.

The set of regular languages over some alphabet Σ is defined inductively as:

1. \emptyset is a regular language.
2. $\{\epsilon\}$ is a regular language.
3. $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.

Regular languages are closed under the operations of union, concatenation and Kleene star.
Regular Languages

A class of simple but useful languages. The set of regular languages over some alphabet Σ is defined inductively as:

1. \emptyset is a regular language.
2. $\{\epsilon\}$ is a regular language.
3. $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
4. If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
Regular Languages

A class of simple but useful languages.

The set of regular languages over some alphabet Σ is defined inductively as:

1. \emptyset is a regular language.
2. $\{\epsilon\}$ is a regular language.
3. $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as a string of length 1.
4. If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
5. If L_1, L_2 are regular then L_1L_2 is regular.

The \cdot^* operator name is Kleene star. Regular languages are closed under the operations of union, concatenation and Kleene star.
Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet Σ is defined inductively as:

1. \emptyset is a regular language.
2. $\{\epsilon\}$ is a regular language.
3. $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
4. If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
5. If L_1, L_2 are regular then L_1L_2 is regular.
6. If L is regular, then $L^* = \bigcup_{n \geq 0} L^n$ is regular.

The \cdot^* operator name is Kleene star.
Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet Σ is defined inductively as:

1. \emptyset is a regular language.
2. $\{\varepsilon\}$ is a regular language.
3. $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as a string of length 1.
4. If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
5. If L_1, L_2 are regular then $L_1 L_2$ is regular.
6. If L is regular, then $L^* = \bigcup_{n \geq 0} L^n$ is regular.

The \cdot^* operator name is Kleene star.

Regular languages are closed under the operations of union, concatenation and Kleene star.
Some simple regular languages

Lemma

If \(w \) is a string then \(L = \{w\} \) is regular.

Example: \(\{aba\} \) or \(\{abbabbab\} \). Why?

\[
L_1 = \{a^3\} \text{ regular by (3)} \\
L_2 = \{b^3\} \text{ regular by (3)} \\
\Sigma a_3 = (L_1 L_2) L_1 \text{ by (5) (twice)}
\]

Lemma: Every finite language is regular.
Some simple regular languages

Lemma

If w *is a string then* $L = \{w\}$ *is regular.*

Example: $\{aba\}$ or $\{abbabbab\}$. Why?

Lemma

Every finite language L *is regular.*

Examples: $L = \{a, abaab, aba\}$. $L = \{w \mid |w| \leq 100\}$ Why?
More Examples

- \{w \mid w \text{ is a keyword in Python program}\}
- \{w \mid w \text{ is a valid date of the form mm/dd/yy}\}
- \{w \mid w \text{ describes a valid Roman numeral}\}
 \{I, II, III, IV, V, VI, VII, VIII, IX, X, XI, \ldots\}\}
- \{w \mid w \text{ contains ”CS374” as a substring}\}.

\textbf{Ex.} "hello CS374b"
Part II

Regular Expressions
Regular Expressions

A way to denote regular languages

- simple **patterns** to describe related strings
- useful in
 - text search (editors, Unix/grep, emacs)
 - compilers: lexical analysis
 - compact way to represent interesting/useful languages
 - dates back to 50’s: Stephen Kleene
 who has a star names after him.
Inductive Definition

A regular expression \(r \) over an alphabet \(\Sigma \) is one of the following:

Base cases:

- \(\emptyset \) denotes the language \(\emptyset \)
- \(\epsilon \) denotes the language \(\{ \epsilon \} \).
- \(a \) denote the language \(\{ a \} \).
Inductive Definition

A regular expression r over an alphabet Σ is one of the following:

Base cases:

- \emptyset denotes the language \emptyset
- ϵ denotes the language $\{\epsilon\}$
- a denote the language $\{a\}$.

Inductive cases: If r_1 and r_2 are regular expressions denoting languages R_1 and R_2 respectively then,

- $(r_1 + r_2)$ denotes the language $R_1 \cup R_2$
- (r_1r_2) denotes the language R_1R_2
- $(r_1)^*$ denotes the language R_1^*

Regular Languages vs Regular Expressions

Regular Languages

∅ regular
{ε} regular
{a} regular for a ∈ Σ
R₁ ∪ R₂ regular if both are
R₁ R₂ regular if both are
R* is regular if R is

Regular Expressions

∅ denotes ∅
ε denotes {ε}
a denote {a}
r₁ + r₂ denotes R₁ ∪ R₂
r₁r₂ denotes R₁R₂
r* denote R*

Regular expressions denote regular languages — they explicitly show the operations that were used to form the language.
For a regular expression r, $L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!

Example: $(0 + 1)$ and $(1 + 0)$ denote the same language $\{0, 1\}$

$$L(0 + 1) = \{0, 1\}$$

Example:

$$(cs + ece)^* 374(a + b)$$

$$\Rightarrow \{cs \ 374a, \ ece \ 374a\}$$
For a regular expression r, $L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!

Example: $(0 + 1)$ and $(1 + 0)$ denote same language $\{0, 1\}$

Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.

$$\sum w \mid w \text{ does not contain } "374" \text{ as a substring}$$

$$\sum = \{\$, \$, 0, 1, (,)\}$$

L= all reg...

$$\sum = \{\$, \$, \alpha, (,)\}$$

L= $\{w \mid w \text{ has balanced parens}\}$

$$()()()$$
For a regular expression \(r\), \(L(r)\) is the language denoted by \(r\). Multiple regular expressions can denote the same language!

Example: \((0 + 1)\) and \((1 + 0)\) denote the same language \(\{0, 1\}\).

Two regular expressions \(r_1\) and \(r_2\) are equivalent if \(L(r_1) = L(r_2)\).

Omit parenthesis by adopting precedence order: \(*\), concatenate, \(+\).

Example: \(r^*s + t = ((r^*)s) + t\)
Notation and Parenthesis

- For a regular expression r, $L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!
 Example: $(0 + 1)$ and $(1 + 0)$ denote same language $\{0, 1\}$
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: \ast, concatenate, $+$.
 Example: $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each of these operations.
 Example: $rst = (rs)t = r(st)$,
 $r + s + t = r + (s + t) = (r + s) + t$.

For a regular expression \(r \), \(L(r) \) is the language denoted by \(r \). Multiple regular expressions can denote the same language!

Example: \((0 + 1)\) and \((1 + 0)\) denote same language \(\{0, 1\}\)

Two regular expressions \(r_1 \) and \(r_2 \) are equivalent if \(L(r_1) = L(r_2) \).

Omit parenthesis by adopting precedence order: \(*\), concatenate, \(+\).

Example: \(r^*s + t = ((r^*)s) + t \)

Omit parenthesis by associativity of each of these operations.

Example: \(rst = (rs)t = r(st) \), \(r + s + t = r + (s + t) = (r + s) + t \).

Superscript \(+\). For convenience, define \(r^+ = rr^* \). Hence if \(L(r) = R \) then \(L(r^+) = R^+ \).
For a regular expression r, $L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!

Example: $(0 + 1)$ and $(1 + 0)$ denote same language $\{0, 1\}$

Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.

Omit parenthesis by adopting precedence order: \ast, concatenate, $+$.

Example: $r^*s + t = ((r^*)s) + t$

Omit parenthesis by associativity of each of these operations.

Example: $rst = (rs)t = r(st)$,
$r + s + t = r + (s + t) = (r + s) + t$.

Superscript \ast. For convenience, define $r^+ = rr^*$. Hence if $L(r) = R$ then $L(r^+) = R^+$.

Other notation: $r + s$, $r \cup s$, $r|s$ all denote union. rs is sometimes written as $r \cdot s$.

Miller, Hassanieh (UIUC)
Given a language L “in mind” (say an English description) we would like to write a regular expression for L (if possible)
Skills

- Given a language L “in mind” (say an English description) we would like to write a regular expression for L (if possible)
- Given a regular expression r we would like to “understand” $L(r)$ (say by giving an English description)
(0 + 1)*: set of all strings over \{0, 1\}
Understanding regular expressions

- $(0 + 1)^*$: set of all strings over $\{0, 1\}$
- $(0 + 1)^*001(0 + 1)^*$:
Understanding regular expressions

- \((0 + 1)^*\): set of all strings over \(\{0, 1\}\)
- \((0 + 1)^*001(0 + 1)^*\): strings with 001 as substring

Let \(L\) be non regular

Let \(L' = \{3743\}L\)

Is this regular?

\(L'' = \{3743\}^*\)

\(L''\) is regular
Understanding regular expressions

- $(0 + 1)^*$: set of all strings over \{0, 1\}
- $(0 + 1)^*001(0 + 1)^*$: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$:
 $$0^* + (0^* 1 (0^* 1 (0^* 1 (0^* 1 (0^*)))^*$$
Understanding regular expressions

- \((0 + 1)^*\): set of all strings over \(\{0, 1\}\)
- \((0 + 1)^*001(0 + 1)^*\): strings with \(001\) as substring
- \(0^* + (0^*10^*10^*10^*)^*\): strings with number of 1's divisible by 3
Understanding regular expressions

- \((0 + 1)^*\): set of all strings over \(\{0, 1\}\)
- \((0 + 1)^*001(0 + 1)^*\): strings with 001 as substring
- \(0^* + (0^*10^*10^*10^*)^*\): strings with number of 1’s divisible by 3
- \(\emptyset\)
Understanding regular expressions

- \((0 + 1)^*\): set of all strings over \(\{0, 1\}\)
- \((0 + 1)^*001(0 + 1)^*\): strings with 001 as substring
- \(0^* + (0^10^10^10^10^*)^*\): strings with number of 1’s divisible by 3
- \(\emptyset\): {}
Understanding regular expressions

- $(0 + 1)^*$: set of all strings over $\{0, 1\}$
- $(0 + 1)^*001(0 + 1)^*$: strings with 001 as substring
- $0^* + (0^{*}10^{*}10^{*}10^{*})^*$: strings with number of 1’s divisible by 3
- \emptyset: $\{\}$
- $(\epsilon + 1)(01)^*(\epsilon + 0)$:
Understanding regular expressions

- \((0 + 1)^*\): set of all strings over \{0, 1\}
- \((0 + 1)^*001(0 + 1)^*\): strings with 001 as substring
- \(0^* + (0^*10^*10^*10^*)^*\): strings with number of 1’s divisible by 3
- \(\emptyset\): {}
- \((\epsilon + 1)(01)^*(\epsilon + 0)\): alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
Understanding regular expressions

- \((0 + 1)^*\): set of all strings over \(\{0, 1\}\)
- \((0 + 1)^*001(0 + 1)^*\): strings with 001 as substring
- \(0^* + (0^*10^*10^*10^*)^*\): strings with number of 1's divisible by 3
- \(\emptyset\): \(\{\}\)
- \((\epsilon + 1)(01)^*(\epsilon + 0)\): alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- \((\epsilon + 0)(1 + 10)^*\):
Understanding regular expressions

- $(0 + 1)^*$: set of all strings over $\{0, 1\}$
- $(0 + 1)^*001(0 + 1)^*$: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1’s divisible by 3
- \emptyset: {} (empty set)
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.
Creating regular expressions

- bitstrings with the pattern **001** or the pattern **100** occurring as a substring

\[
(0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*
\]

- bitstrings with an even number of 1's

\[
0^* + (0^*10^*)^* \cdot (0 + 1)^*
\]

- bitstrings with an odd number of 1's

\[
r_1 \cdot r \text{ where } r \text{ is solution to previous part}
\]

- bitstrings that do not contain 01 as a substring

\[
1^*0^*
\]

- bitstrings that do not contain 011 as a substring

\[
1^*0^* \cdot (100)(0 + 1)^*
\]

- Hard: bitstrings with an odd number of 1s and an odd number of 0s.
bitstrings with the pattern 001 or the pattern 100 occurring as a substring

one answer: \((0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*\)
Creating regular expressions

- bitstrings with the pattern **001** or the pattern **100** occurring as a substring
 - one answer: \((0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*\)
- bitstrings with an even number of 1’s

Miller, Hassanieh (UIUC)
CS374 13
Spring 2020 13 / 16
Creating regular expressions

- bitstrings with the pattern **001** or the pattern **100** occurring as a substring
 one answer: \((0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*\)
- bitstrings with an even number of **1**’s
 one answer: **0**\(^* + (0^*10^*10^*)^*\)
Creating regular expressions

- Bitstrings with the pattern 001 or the pattern 100 occurring as a substring
 one answer: \((0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*\)

- Bitstrings with an even number of 1’s
 one answer: \(0^* + (0^*10^*10^*)^*\)

- Bitstrings with an odd number of 1’s
Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring
 one answer: \((0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*\)

- bitstrings with an even number of 1’s
 one answer: \(0^* + (0^*10^*10^*)^*\)

- bitstrings with an odd number of 1’s
 one answer: \(r1r\) where \(r\) is solution to previous part
Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring

 one answer: \((0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*\)

- bitstrings with an even number of 1’s

 one answer: \(0^* + (0^*10^*10^*)^*\)

- bitstrings with an odd number of 1’s

 one answer: \(r1r\) where \(r\) is solution to previous part

- bitstrings that do not contain 01 as a substring
Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring
 one answer: $(0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*$

- bitstrings with an even number of 1’s
 one answer: $0^* + (0^*10^*10^*)^*$

- bitstrings with an odd number of 1’s
 one answer: $r1r$ where r is solution to previous part

- bitstrings that do not contain 01 as a substring
 one answer: 1^*0^*
Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring
 one answer: \((0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*\)

- bitstrings with an even number of 1’s
 one answer: \(0^* + (0^*10^*10^*)^*\)

- bitstrings with an odd number of 1’s
 one answer: \(r1r\) where \(r\) is solution to previous part

- bitstrings that do not contain 01 as a substring
 one answer: \(1^*0^*\)

- bitstrings that do not contain 011 as a substring
Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring

 one answer: \((0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*\)

- bitstrings with an even number of 1’s

 one answer: \(0^* + (0^*10^*10^*)^*\)

- bitstrings with an odd number of 1’s

 one answer: \(r1r\) where \(r\) is solution to previous part

- bitstrings that do not contain 01 as a substring

 one answer: \(1^*0^*\)

- bitstrings that do not contain 011 as a substring

 one answer: \(1^*0^*(100^*)^*(1 + \epsilon)\)
Creating regular expressions

- bitstrings with the pattern \(001\) or the pattern \(100\) occurring as a substring
 one answer: \((0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*\)
- bitstrings with an even number of 1’s
 one answer: \(0^* + (0^*10^*10^*)^*\)
- bitstrings with an odd number of 1’s
 one answer: \(r1r\) where \(r\) is solution to previous part
- bitstrings that do not contain 01 as a substring
 one answer: \(1^*0^*\)
- bitstrings that do not contain 011 as a substring
 one answer: \(1^*0^*(100^*)^*(1 + \epsilon)\)
- Hard: bitstrings with an odd number of 1s and an odd number of 0s.
Bit strings with odd number of 0s and 1s

The regular expression is

\[(00 + 11)^* (01 + 10) \left(00 + 11 + (01 + 10)(00 + 11)^* (01 + 10) \right)^* \]

(Solved using techniques to be presented in the following lectures...)
Regular expression identities

- $r^* r^* = r^*$ meaning for any regular expression r,
 $L(r^* r^*) = L(r^*)$
- $(r^*)^* = r^*$
- $rr^* = r^* r$
- $(rs)^* r = r(sr)^*$
- $(r + s)^* = (r^* s^*)^* = (r^* + s^*)^* = (r + s^*)^* = \ldots$
Regular expression identities

- $r^* r^* = r^*$ meaning for any regular expression r, $L(r^* r^*) = L(r^*)$
- $(r^*)^* = r^*$
- $rr^* = r^* r$
- $(rs)^* r = r(sr)^*$
- $(r + s)^* = (r^* s^*)^* = (r^* + s^*)^* = (r + s^*)^* =$ …

Question: How does one prove an identity?
Regular expression identities

- $r^* r^* = r^*$ meaning for any regular expression r, $L(r^* r^*) = L(r^*)$
- $(r^*)^* = r^*$
- $rr^* = r^* r$
- $(rs)^* r = r(sr)^*$
- $(r + s)^* = (r^* s^*)^* = (r^* + s^*)^* = (r + s^*)^* = \ldots$

Question: How does one prove an identity?
By induction. On what?
Regular expression identities

- \(r^* r^* = r^* \) meaning for any regular expression \(r \),
 \[L(r^* r^*) = L(r^*) \]
- \((r^*)^* = r^*\)
- \(rr^* = r^* r\)
- \((rs)^* r = r(sr)^*\)
- \((r + s)^* = (r^* s^*)^* = (r^* + s^*)^* = (r + s^*)^* = \ldots\)

Question: How does one prove an identity?
By induction. On what? Length of \(r \) since \(r \) is a string obtained from specific inductive rules.
Consider $L = \{0^n1^n \mid n \geq 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}$.
A non-regular language and other closure properties

Consider $L = \{0^n1^n \mid n \geq 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}$.

Theorem

L is not a regular language.
A non-regular language and other closure properties

Consider \(L = \{0^n1^n \mid n \geq 0\} = \{\epsilon, 01, 0011, 000111, \ldots\} \).

Theorem

\(L \) is not a regular language.

How do we prove it?
A non-regular language and other closure properties

Consider \(L = \{0^n1^n \mid n \geq 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}. \)

Theorem

\(L \) is not a regular language.

How do we prove it?

Other questions:

- Suppose \(R_1 \) is regular and \(R_2 \) is regular. Is \(R_1 \cap R_2 \) regular?
- Suppose \(R_1 \) is regular is \(\bar{R}_1 \) (complement of \(R_1 \)) regular?