Algorithms & Models of Computation CS/ECE 374 B, Spring 2020

Regular Languages and Expressions

Lecture 2 Friday, January 24, 2020

LATEXed: January 19, 2020 04:11

Part I

Regular Languages

A class of simple but useful languages.

The set of regular languages over some alphabet Σ is defined inductively as:

- Ø is a regular language.
- **2** $\{\epsilon\}$ is a regular language.
- $\underbrace{\bullet}_{\{a\}} \text{ is a regular language for each } a \in \Sigma. \text{ Interpreting } a \text{ as string of length } 1.$

A class of simple but useful languages. The set of regular languages over some alphabet Σ is defined inductively as:

- Ø is a regular language.
- **2** $\{\epsilon\}$ is a regular language.
- {a} is a regular language for each a ∈ Σ. Interpreting a as string of length 1.
- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.

A class of simple but useful languages. The set of regular languages over some alphabet Σ is defined inductively as:

- Ø is a regular language.
- **2** $\{\epsilon\}$ is a regular language.
- {a} is a regular language for each a ∈ Σ. Interpreting a as string of length 1.
- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
- So If L_1, L_2 are regular then L_1L_2 is regular.

A class of simple but useful languages. The set of regular languages over some alphabet Σ is defined inductively as:

- Ø is a regular language.
- **2** $\{\epsilon\}$ is a regular language.
- {a} is a regular language for each a ∈ Σ. Interpreting a as string of length 1.
- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
- If L_1, L_2 are regular then L_1L_2 is regular.
- If L is regular, then $L^* = \bigcup_{n \ge 0} L^n$ is regular.
 - The **•*** operator name is **Kleene star**.

A class of simple but useful languages. The set of regular languages over some alphabet Σ is defined inductively as:

- \emptyset is a regular language.
- $\textcircled{\bullet} \{ \epsilon \} \text{ is a regular language.}$
- $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
 - If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
 - If L_1, L_2 are regular then L_1L_2 is regular.
 - **o** If *L* is regular, then $L^* = \bigcup_{n>0} L^n$ is regular.
 - The **•*** operator name is **Kleene star**.

Regular languages are closed under the operations of union, concatenation and Kleene star.

Some simple regular languages

Lemma

If w is a string then $L = \{w\}$ is regular.

Some simple regular languages

Lemma

If w is a string then $L = \{w\}$ is regular.

Example: {aba} or {abbabbab}. Why?

Lemma

Every finite language L is regular.

Examples: $L = \{a, abaab, aba\}$. $L = \{w \mid |w| \le 100\}$ Why?

More Examples

- $\{w \mid w \text{ is a keyword in Python program}\}$
- {w | w is a valid date of the form mm/dd/yy}
- {w | w describes a valid Roman numeral} {I, II, III, IV, V, VI, VII, VIII, IX, X, XI, ...}.

ex "hello (53746"

• $\{w \mid w \text{ contains } _CS374_$ as a substring $\}$.

Part II

Regular Expressions

Regular Expressions

A way to denote regular languages

- simple patterns to describe related strings
- useful in
 - text search (editors, Unix/grep, emacs)
 - compilers: lexical analysis
 - compact way to represent interesting/useful languages
 - dates back to 50's: Stephen Kleene who has a star names after him.

Inductive Definition

A regular expression **r** over an alphabet Σ is one of the following: Base cases:

👤 🖉 denotes the language 🖉

• ϵ denotes the language $\{\epsilon\}$.

• a denote the language $\{a\}$.

A regular expression **r** over an alphabet Σ is one of the following: Base cases:

- Ø denotes the language Ø
- ϵ denotes the language $\{\epsilon\}$.
- a denote the language {a}.

Inductive cases: If r_1 and r_2 are regular expressions denoting languages R_1 and R_2 respectively then,

- $(\mathbf{r}_1 + \mathbf{r}_2)$ denotes the language $R_1 \cup R_2$
- (r_1r_2) denotes the language R_1R_2
- $(\mathbf{r}_1)^*$ denotes the language R_1^*

Regular Languages vs Regular Expressions

 \emptyset regular $\{\epsilon\}$ regular $\{a\}$ regular for $a \in \Sigma$ $R_1 \cup R_2$ regular if both are R_1R_2 regular if both are R^* is regular if R is Shong 5 Regular Expressions

 \emptyset denotes \emptyset ϵ denotes $\{\epsilon\}$ a denote $\{a\}$ $\mathbf{r}_1 + \mathbf{r}_2$ denotes $R_1 \cup R_2$ $\mathbf{r}_1\mathbf{r}_2$ denotes R_1R_2 \mathbf{r}^* denotes R^*

Regular expressions denote regular languages — they explicitly show the operations that were used to form the language

• For a regular expression \mathbf{r} , $L(\mathbf{r})$ is the language denoted by \mathbf{r} . Multiple regular expressions can denote the same language! **Example:** (0 + 1) and (1 + 0) denote same language $\{0, 1\}$ $L(0+1) = \{0\} = \{0\} = \{0,1\}$ $E_{X}. (cs + ece) 374 (a + b)$ $= \int cs 374a z$ cs 374a z ece 374a

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 Example: (0 + 1) and (1 + 0) denote same language {0,1}
- Two regular expressions \mathbf{r}_1 and \mathbf{r}_2 are equivalent if $L(\mathbf{r}_1) = L(\mathbf{r}_2)$.

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 Example: (0 + 1) and (1 + 0) denote same language {0, 1}
- Two regular expressions \mathbf{r}_1 and \mathbf{r}_2 are equivalent if $L(\mathbf{r}_1) = L(\mathbf{r}_2)$.
- Omit parenthesis by adopting precedence order: *, concatenate, +.

Example: $r^*s + t = ((r^*)s) + t$

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 Example: (0 + 1) and (1 + 0) denote same language {0,1}
- Two regular expressions \mathbf{r}_1 and \mathbf{r}_2 are equivalent if $L(\mathbf{r}_1) = L(\mathbf{r}_2)$.
- Omit parenthesis by adopting precedence order: *, concatenate, +.

Example: $r^*s + t = ((r^*)s) + t$

Omit parenthesis by associativity of each of these operations.
 Example: rst = (rs)t = r(st),
 r + s + t = r + (s + t) = (r + s) + t.

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 Example: (0 + 1) and (1 + 0) denote same language {0,1}
- Two regular expressions \mathbf{r}_1 and \mathbf{r}_2 are equivalent if $L(\mathbf{r}_1) = L(\mathbf{r}_2)$.
- Omit parenthesis by adopting precedence order: *, concatenate, +.

Example: $r^*s + t = ((r^*)s) + t$

- Omit parenthesis by associativity of each of these operations.
 Example: rst = (rs)t = r(st),
 r + s + t = r + (s + t) = (r + s) + t.
- Superscript +. For convenience, define $\mathbf{r}^+ = \mathbf{r}\mathbf{r}^*$. Hence if $L(\mathbf{r}) = R$ then $L(\mathbf{r}^+) = R^+$.

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 Example: (0 + 1) and (1 + 0) denote same language {0,1}
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: *, concatenate, +.

Example: $r^*s + t = ((r^*)s) + t$

- Omit parenthesis by associativity of each of these operations.
 Example: rst = (rs)t = r(st),
 - r + s + t = r + (s + t) = (r + s) + t.
- Superscript +. For convenience, define r⁺ = rr^{*}. Hence if L(r) = R then L(r⁺) = R⁺.
- Other notation: r + s, r ∪ s, r|s all denote union. rs is sometimes written as r s.

• Given a language *L* "in mind" (say an English description) we would like to write a regular expression for *L* (if possible)

Skills

- Given a language *L* "in mind" (say an English description) we would like to write a regular expression for *L* (if possible)
- Given a regular expression r we would like to "understand" L(r) (say by giving an English description)

• (0 + 1)*: set of all strings over {0,1}

(0 + 1)*: set of all strings over {0, 1}
(0 + 1)*001(0 + 1)*:

- (0 + 1)*: set of all strings over {0,1}
- $(0 + 1)^* 001(0 + 1)^*$: strings with 001 as substring

Let L be non Regular Let L' = { 374}L isthis regular? L''= {374<u>3</u>2*

- (0 + 1)*: set of all strings over {0,1}
- $(0 + 1)^* 001(0 + 1)^*$: strings with 001 as substring
- 0* + (0*10*10*10*)*: $O^{*} + (O^{*} + (O^{*}) + (O^{*})) + (O^{*}) + (O$

- (0 + 1)*: set of all strings over {0,1}
- (0 + 1)*001(0 + 1)*: strings with 001 as substring
- 0* + (0*10*10*10*)*: strings with number of 1's divisible by 3

- (0 + 1)*: set of all strings over {0,1}
- $(0 + 1)^* 001(0 + 1)^*$: strings with 001 as substring
- 0* + (0*10*10*10*)*: strings with number of 1's divisible by 3
- Ø0:

- (0 + 1)*: set of all strings over {0,1}
- $(0 + 1)^* 001(0 + 1)^*$: strings with 001 as substring
- 0* + (0*10*10*10*)*: strings with number of 1's divisible by 3
- ØO: {}

- (0 + 1)*: set of all strings over {0,1}
- $(0 + 1)^* 001(0 + 1)^*$: strings with 001 as substring
- 0* + (0*10*10*10*)*: strings with number of 1's divisible by 3
- ØO: {}
- $(\epsilon + 1)(01)^*(\epsilon + 0)$:

- (0 + 1)*: set of all strings over {0,1}
- $(0 + 1)^* 001(0 + 1)^*$: strings with 001 as substring
- 0* + (0*10*10*10*)*: strings with number of 1's divisible by 3
- Ø0: {}
- (ε + 1)(01)*(ε + 0): alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s

- (0 + 1)*: set of all strings over {0,1}
- $(0+1)^*001(0+1)^*$: strings with 001 as substring
- 0* + (0*10*10*10*)*: strings with number of 1's divisible by 3
- ØO: {}
- (ε + 1)(01)*(ε + 0): alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- (ϵ + 0)(1 + 10)*:

- (0 + 1)*: set of all strings over {0,1}
- $(0 + 1)^* 001(0 + 1)^*$: strings with 001 as substring
- 0* + (0*10*10*10*)*: strings with number of 1's divisible by 3
- ØO: {}
- (ε + 1)(01)*(ε + 0): alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.

Creating regular expressions

• bitstrings with the pattern **001** or the pattern **100** occurring as a substring

 $(0+1)^{4}(001)(0+1)' + (001)^{4}(100)(0+1)^{4})$

Creating regular expressions

bitstrings with the pattern 001 or the pattern 100 occurring as a substring one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*
- bitstrings with an even number of 1's

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*
- bitstrings with an even number of 1's one answer: 0* + (0*10*10*)*

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*
- bitstrings with an even number of 1's one answer: 0* + (0*10*10*)*
- $\bullet\,$ bitstrings with an odd number of $1\mbox{'s}$

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*
- bitstrings with an even number of 1's one answer: 0* + (0*10*10*)*
- bitstrings with an odd number of 1's one answer: r1r where r is solution to previous part

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*
- bitstrings with an even number of 1's one answer: 0* + (0*10*10*)*
- bitstrings with an odd number of 1's one answer: r1r where r is solution to previous part
- bitstrings that do not contain **01** as a substring

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*
- bitstrings with an even number of 1's one answer: 0* + (0*10*10*)*
- bitstrings with an odd number of 1's one answer: r1r where r is solution to previous part
- bitstrings that do not contain 01 as a substring one answer:1*0*

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*
- bitstrings with an even number of 1's one answer: 0* + (0*10*10*)*
- bitstrings with an odd number of 1's one answer: r1r where r is solution to previous part
- bitstrings that do not contain 01 as a substring one answer:1*0*
- bitstrings that do not contain **011** as a substring

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*
- bitstrings with an even number of 1's one answer: 0* + (0*10*10*)*
- bitstrings with an odd number of 1's one answer: r1r where r is solution to previous part
- bitstrings that do not contain 01 as a substring one answer:1*0*
- bitstrings that do not contain 011 as a substring one answer: 1*0*(100*)*(1 + ε)

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring one answer: (0 + 1)*001(0 + 1)* + (0 + 1)*100(0 + 1)*
- bitstrings with an even number of 1's one answer: 0* + (0*10*10*)*
- bitstrings with an odd number of 1's one answer: r1r where r is solution to previous part
- bitstrings that do not contain 01 as a substring one answer:1*0*
- bitstrings that do not contain 011 as a substring one answer: 1*0*(100*)*(1 + ε)
- Hard: bitstrings with an odd number of 1s *and* an odd number of 0s.

Bit strings with odd number of **0**s and **1**s

The regular expression is

```
 \begin{array}{c} (00+11)^*(01+10) \\ & \left(00+11+(01+10)(00+11)^*(01+10)\right)^* \end{array} \end{array}
```

(Solved using techniques to be presented in the following lectures...)

- r*r* = r* meaning for any regular expression r, L(r*r*) = L(r*)
- $(r^*)^* = r^*$
- $rr^* = r^*r$
- $(rs)^*r = r(sr)^*$
- $(r+s)^* = (r^*s^*)^* = (r^*+s^*)^* = (r+s^*)^* = \dots$

- r*r* = r* meaning for any regular expression r, L(r*r*) = L(r*)
- $(r^*)^* = r^*$
- $rr^* = r^*r$
- $(rs)^*r = r(sr)^*$
- $(r+s)^* = (r^*s^*)^* = (r^*+s^*)^* = (r+s^*)^* = \dots$

Question: How does on prove an identity?

- r*r* = r* meaning for any regular expression r, L(r*r*) = L(r*)
- $(r^*)^* = r^*$
- $rr^* = r^*r$
- $(rs)^*r = r(sr)^*$
- $(r+s)^* = (r^*s^*)^* = (r^*+s^*)^* = (r+s^*)^* = \dots$

Question: How does on prove an identity? By induction. On what?

- r*r* = r* meaning for any regular expression r, L(r*r*) = L(r*)
- $(r^*)^* = r^*$
- $rr^* = r^*r$
- $(rs)^*r = r(sr)^*$
- $(r+s)^* = (r^*s^*)^* = (r^*+s^*)^* = (r+s^*)^* = \dots$

Question: How does on prove an identity? By induction. On what? Length of r since r is a string obtained from specific inductive rules.

Consider $L = \{0^n 1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}.$

Consider $L = \{0^n 1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}.$

Theorem

L is not a regular language.

Consider $L = \{0^n 1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}.$

Theorem

L is not a regular language.

How do we prove it?

Consider $L = \{0^n 1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}.$

Theorem

L is not a regular language.

How do we prove it?

Other questions:

- Suppose R_1 is regular and R_2 is regular. Is $R_1 \cap R_2$ regular?
- Suppose R_1 is regular is \overline{R}_1 (complement of R_1) regular?