Graphs 1

Monday, March 23, 2020
10:58 AM

Today:
- Graphs terminology
- Modelling problems
- Representing graphs
- Graph traversals/graph search

\[G = (V, E) \]

\[V: \text{ set of vertices,} \]
\[E \subseteq V^2 \]
\[E = \{(v_1, v_2) \ldots \} \]

"there is an edge between \(v_1 \) and \(v_2 \) in \(G \)"

- Other features:
 - Attributes about the nodes or about the edges
 - Aka label
 - Directed or undirected

Undirected graph:
\[(v_1, v_2) \in E \iff (v_2, v_1) \in E \]

- Directed graph
 - OK to have edge between \((v_1, v_2) \) and \(\text{'multigraph'} (v_2, v_1) \)

- Simple undirected graph:
 - At most one edge \((v_1, v_2) \)
 - No self loops

- Trees

Model a problem with a graph

<table>
<thead>
<tr>
<th>Example</th>
<th>What are the nodes?</th>
<th>What are the edges?</th>
<th>What are the attributes?</th>
<th>Directed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nodes</td>
<td>Transitions</td>
<td>Attributes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Abstract questions about graphs

I is there a path between \(v_1 \) and \(v_2 \)

\[
G_1 = \begin{pmatrix}
2 & 0 & 3 \\
4 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\]

E.g. no path b/w 1 and 4

Source/Start \(\rightarrow \) Sink/End

Desc: Path between \(v_0 \) and \(v_k \) is a sequence of nodes \((v_0, v_1, \ldots, v_k)\) s.t.

V: all possible game states

\(E: (v_1, v_2) \) iff

\(v_2 \) is the result of applying a valid chess move.

\(\checkmark \) directed \(\rightarrow \) not always reversible.
For all \(i \in \mathbb{N} \), if \((v_i, v_{i+1}) \in E \) related: What's the shortest path?

If there are weights on edges, may be use smallest or largest weight path

\[A \rightarrow B \text{ of length } 1 \]
\[A \rightarrow B \text{ shortest weighted path is } 3 \]

Connectedness

\[G = (V, E) \]

Defn: unconnected graph:

\[\exists v_i, v_j \text{ s.t. no path from } v_i \rightarrow v_j \]

Count the number of connected components

Independent sets: set of nodes \(\{v_1, ..., v_n\} \) s.t. no pair has an edge b/w them

Representing graphs

- Adjacency matrix: \(E \leq V^2 \)

\[
\begin{array}{cccccc}
 & 1 & 2 & 3 & 4 & 5 \\
1 & 0 & 1 & 1 & 0 & 0 \\
2 & 1 & 0 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 & 0 & 0 \\
4 & 0 & 0 & 0 & 0 & 0 \\
5 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

degree(3)?
- List of lists (array of arrays)

 For each node, store a list of neighbors:

 1: [2, 3]
 2: [1, 3]
 3: [2, 1]
 4: [3]
 5: [4]
 6: []

 Metrics: \(G = (V, E) \)

 \(n = |V| \) # of nodes
 \(m = |E| \) # of edges

 Constraints: \(m \leq n^2 \) (for a simple graph)

 \(O(n + m) \) is a smaller bound \(O(n^2) \)

\[
\begin{array}{|c|c|c|}
\hline
\text{Storage} & \text{Run-time for \(deg() \)} & \text{Run-time for \(deg() \)}
\hline
\text{adj. mat} & n^2 & O(n^2) & O(n)
\hline
\text{list of lists} & O(n + m) & O(n + m)
\hline
\text{array of arrays} & O(n + m) & O(1)
\hline
\end{array}
\]

degree \((v) \): # of neighbors

Traversals:

Given \(V \), find all nodes in \(G_{\in}(V) \)

\(G_{\in}(V) \): \(\exists u, v \in V \) \text{Path } U \rightarrow V \)

\(\text{Visited} = \left[\begin{array}{c}
\text{False} \\
\text{False} \\
\text{False} \\
\text{False} \\
\text{False} \\
\text{False}
\end{array} \right] \) // size n array
- \textbf{Explore}(v):
 // Start from \textit{v},
 // every node reachable from \textit{v} is \textit{visited}!
 if \textit{v} not visited: mark \textit{v}
 for \textit{neighbor} \textit{w} \in \text{neighbors}(\textit{v}):
 if visited[\textit{w}] = False:
 set visited[\textit{w}] = True
 \textbf{Explore}(\textit{w})