
We must all hang together, gentlemen,
or else we shall most assuredly hang separately.

— Benjamin Franklin, at the signing of theDeclaration of Independence (July 4, 1776)
It is a very sad thing that nowadays there is so little useless information.

— Oscar Wilde, A Few Maxims for the Instruction of the Over-Educated (1894)
A ship in harbor is safe, but that is not what ships are built for.

— John A. Shedd, “Salt from My Attic” (1928)
Clean ALL the things!

— Allie Brosh, “This is Why I’ll Never be an Adult”,
Hyperbole and a Half, June 17, 2010.

CHAPTER 7
Minimum Spanning Trees

ÆÆÆThis is the Spring 2016 revision in the new skin; it still needs significant revision. In par-ticular, several figures need to be redrawn in OmniGraffle.

7.1 Introduction

Suppose we are given a connected, undirected, weighted graph. This is a graph G = (V, E)
together with a function w: E→ R that assigns a real weight w(e) to each edge e, which
may be positive, negative, or zero. Our task is to find the minimum spanning tree of G,
that is, the spanning tree T that minimizes the function

w(T) =
∑

e∈T

w(e).

To keep things simple, I’ll assume that all the edge weights are distinct: w(e) 6= w(e′) for
any pair of edges e and e′. Distinct weights guarantee that the minimum spanning tree
of the graph is unique. Without this condition, there may be several different minimum
spanning trees. For example, if all the edges have weight 1, then every spanning tree is a
minimum spanning tree with weight V − 1.

© Copyright 2016 Jeff Erickson.This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).Free distribution is strongly encouraged; commercial distribution is expressly forbidden.See http://jeffe.cs.illinois.edu/teaching/algorithms/ for the most recent revision. 1

http://hyperboleandahalf.blogspot.com/2010/06/this-is-why-ill-never-be-adult.html
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu/teaching/algorithms/

7. MINIMUM SPANNING TREES

8 5
10

2 3

18
12 30

16

26

14

4

A weighted graph and its minimum spanning tree.

If we have an algorithm that assumes the edge weights are unique, we can still use it
on graphs where multiple edges have the same weight, as long as we have a consistent
method for breaking ties. One way to break ties consistently is to use the following
algorithm in place of a simple comparison. ShorterEdge takes as input four integers
i, j, k, l, and decides which of the two edges (i, j) and (k, l) has “smaller” weight.

ShorterEdge(i, j, k, l)
if w(i, j)< w(k, l) then return (i, j)
if w(i, j)> w(k, l) then return (k, l)
if min(i, j)<min(k, l) then return (i, j)
if min(i, j)>min(k, l) then return (k, l)
if max(i, j)<max(k, l) then return (i, j)
〈〈if max(i,j)<max(k,l) 〉〉 return (k, l)

7.2 The Only Minimum Spanning Tree Algorithm

There are several different methods for computing minimum spanning trees, but almost
all of them are instances of the following generic algorithm. The situation is similar to
the previous lecture, where we saw that depth-first search and breadth-first search were
both instances of a single generic traversal algorithm.

The generic minimum spanning tree algorithm maintains an acyclic subgraph F of
the input graph G, which we will call an intermediate spanning forest. F is a subgraph of
the minimum spanning tree of G, and every component of F is a minimum spanning tree
of its vertices. Initially, F consists of n one-node trees. The generic algorithm merges
trees together by adding certain edges between them. When the algorithm halts, F
consists of a single n-node tree, which must be the minimum spanning tree. Obviously,
we have to be careful about which edges we add to the evolving forest, since not every
edge is in the minimum spanning tree.

The intermediate spanning forest F induces two special types of edges. An edge
is useless if it is not an edge of F , but both its endpoints are in the same component
of F . For each component of F , we associate a safe edge—the minimum-weight edge
with exactly one endpoint in that component. Different components might or might not

2

7.3. Borůvka’s Algorithm

have different safe edges. Some edges are neither safe nor useless—we call these edges
undecided.

All minimum spanning tree algorithms are based on two simple observations.

Lemma 1. The minimum spanning tree contains every safe edge.

Proof: In fact we prove the following stronger statement: For any subset S of the vertices
of G, the minimum spanning tree of G contains the minimum-weight edge with exactly
one endpoint in S. We prove this claim using a greedy exchange argument.

Let S be an arbitrary subset of vertices of G; let e be the lightest edge with exactly one
endpoint in S; and let T be an arbitrary spanning tree that does not contain e. Because T
is connected, it contains a path from one endpoint of e to the other. Because this path
starts at a vertex of S and ends at a vertex not in S, it must contain at least one edge
with exactly one endpoint in S; let e′ be any such edge. Because T is acyclic, removing e′

from T yields a spanning forest with exactly two components, one containing each
endpoint of e. Thus, adding e to this forest gives us a new spanning tree T ′ = T − e′ + e.
The definition of e implies w(e′)> w(e), which implies that T ′ has smaller total weight
than T . We conclude that T is not the minimum spanning tree, which completes the
proof. �

e’

e

Proving that every safe edge is in the minimum spanning tree. Black vertices are in the subset S.

Lemma 2. The minimum spanning tree contains no useless edge.

Proof: Adding any useless edge to F would introduce a cycle. �

Our generic minimum spanning tree algorithm repeatedly adds one or more safe
edges to the evolving forest F . Whenever we add new edges to F , some undecided edges
become safe, and others become useless. To specify a particular algorithm, we must
decide which safe edges to add, and we must describe how to identify new safe and new
useless edges, at each iteration of our generic template.

7.3 Borůvka’s Algorithm

The oldest and arguably simplest minimum spanning tree algorithm was discovered
by Borůvka in 1926. The algorithm was rediscovered by Choquet in 1938; again by

3

7. MINIMUM SPANNING TREES

Florek, Łukaziewicz, Perkal, Stienhaus, and Zubrzycki in 1951; and again by Sollin some
time in the early 1960s. Because Sollin was the only Western computer scientist in this
list—Choquet was a civil engineer; Florek and his co-authors were anthropologists—this
is often called “Sollin’s algorithm”, especially in the parallel computing literature.

The Borůvka/Choquet/Florek/Łukaziewicz/Perkal/Stienhaus/Zubrzycki/Sollin algo-
rithm can be summarized in one line:

Borůvka: Add ALL the safe edges¹ and recurse.

12

8 5
10

2 3

18
12 30

16

26

14

4

18

26

14

Borůvka’s algorithm run on the example graph. Thick edges are in F .Arrows point along each component’s safe edge. Dashed (gray) edges are useless.
We can find all the safe edge in the graph in O(E) time as follows. First, we count

the components of F using whatever-first search, using the standard wrapper function.
As we count, we label every vertex with its component number; that is, every vertex in
the first traversed component gets label 1, every vertex in the second component gets
label 2, and so on.

If F has only one component, we’re done. Otherwise, we compute an array S[1 .. V]
of edges, where S[i] is the minimum-weight edge with one endpoint in the ith component
(or a sentinel value Null if there are less than i components). To compute this array,
we consider each edge uv in the input graph G. If the endpoints u and v have the same
label, then uv is useless. Otherwise, we compare the weight of uv to the weights of
S[label(u)] and S[label(v)] and update the array entries if necessary.

1See also: Allie Brosh, “This is Why I’ll Never be an Adult”, Hyperbole and a Half, June 17, 2010. Actually,
just go see everything in Hyperbole and a Half. And then go buy the books. And extra copies for your cat.

4

http://hyperboleandahalf.blogspot.com/2010/06/this-is-why-ill-never-be-adult.html

7.3. Borůvka’s Algorithm

Borůvka(V, E):
F = (V,∅)
count← CountAndLabel(F)
while count> 1

AddAllSafeEdges(E, F, count)
count← CountAndLabel(F)

return F

AddAllSafeEdges(E, F, count):
for i← 1 to count

S[i]← Null 〈〈sentinel: w(Null) :=∞〉〉
for each edge uv ∈ E

if label(u) 6= label(v)
if w(uv)< w(S[label(u)])

S[label(u)]← uv
if w(uv)< w(S[label(v)])

S[label(v)]← uv
for i← 1 to count

if S[i] 6= Null
add S[i] to F

Each call to TraverseAll requires O(V) time, because the forest F has at most V −1
edges. Assuming the graph is represented by an adjacency list, the rest of each iteration
of the main while loop requires O(E) time, because we spend constant time on each
edge. Because the graph is connected, we have V ≤ E + 1, so each iteration of the while
loop takes O(E) time.

Each iteration reduces the number of components of F by at least a factor of two—the
worst case occurs when the components coalesce in pairs. Since F initially has V
components, the while loop iterates at most O(log V) times. Thus, the overall running
time of Borůvka’s algorithm is O(E log V).

Despite its relatively obscure origin, early algorithms researchers were aware of
Borůvka’s algorithm, but dismissed it as being “too complicated”! As a result, despite
its simplicity and efficiency, Borůvka’s algorithm is rarely mentioned in algorithms and
data structures textbooks. On the other hand, Borůvka’s algorithm has several distinct
advantages over other classical MST algorithms.

• Borůvka’s algorithm often runs faster than the O(E log V) worst-case running time.
In arbitrary graphs, the number of components in F can drop by significantly more
than a factor of 2 in a single iteration, reducing the number of iterations below the
worst-case dlog2 V e. A slight reformulation of Borůvka’s algorithm (actually closer
to Borůvka’s original presentation) actually runs in O(E) time for a broad class of
interesting graphs, including graphs that can be drawn in the plane without edge
crossings. In contrast, the time analysis for the other two algorithms applies to all
graphs.

• Borůvka’s algorithm allows for significant parallelism; in each iteration, each compo-
nent of F can be handled in a separate independent thread. This implicit parallelism
allows for even faster performance on multicore or distributed systems. In contrast,
the other two classical MST algorithms are intrinsically serial.

• There are several more recent minimum-spanning-tree algorithms that are faster
even in the worst case than the classical algorithms described here. All of these faster
algorithms are generalizations of Borůvka’s algorithm.

5

7. MINIMUM SPANNING TREES

In short, if you ever need to implement a minimum-spanning-tree algorithm, use Borůvka.
On the other hand, if you want to prove things about minimum spanning trees effectively,
you really need to know the next two algorithms as well.

7.4 Jarník’s (“Prim’s”) Algorithm

The next oldest minimum spanning tree algorithm was first described by the Czech
mathematician Vojtěch Jarník in a 1929 letter to Borůvka; Jarník published his discovery
the following year. The algorithm was independently rediscovered by Joseph Kruskal
in 1956, by Prim in 1957, by Loberman and Weinberger in 1957, and finally by Dijkstra
in 1958. Prim, Loberman, Weinberger, and Dijkstra all (eventually) knew of and even
cited Kruskal’s paper, but since Kruskal also described two other minimum-spanning-tree
algorithms in the same paper, this algorithm is usually called “Prim’s algorithm”, or
sometimes “the Prim/Dijkstra algorithm”, even though by 1958 Dijkstra already had
another algorithm (inappropriately) named after him.

In Jarník’s algorithm, the forest F contains only one nontrivial component T ; all the
other components are isolated vertices. Initially, T consists of an arbitrary vertex of the
graph. The algorithm repeats the following step until T spans the whole graph:

Jarník: Repeatedly add T ’s safe edge to T .

8 5
10

2 3

18 16
12

14

30

4 26

18

8 5
10

2 3

16
12

14

30

26

8 5
10

2 3

18 16
30

26

8 5
10

3

16
30

26

8 5

16
30

26

16
30

26

Jarník’s algorithm run on the example graph, starting with the bottom vertex.At each stage, thick edges are in T , an arrow points along T ’s safe edge, and dashed edges are useless.
To implement Jarník’s algorithm, we keep all the edges adjacent to T in a priority

queue. When we pull the minimum-weight edge out of the priority queue, we first check
whether both of its endpoints are in T . If not, we add the edge to T and then add
the new neighboring edges to the priority queue. In other words, Jarník’s algorithm
is another instance of the generic graph traversal algorithm we saw last time, using a

6

7.4. Jarník’s (“Prim’s”) Algorithm

priority queue as the “bag”! If we implement the algorithm this way, the algorithm runs
in O(E log E) = O(E log V) time.

?Improving Jarník’s Algorithm

We can improve Jarník’s algorithm using a more advanced priority queue data structure
called a Fibonacci heap, first described by Michael Fredman and Robert Tarjan in 1984.
Fibonacci heaps support the standard priority queue operations Insert, ExtractMin,
and DecreaseKey. However, unlike standard binary heaps, which require O(log n) time
for every operation, Fibonacci heaps support Insert and DecreaseKey in constant
amortized time. The amortized cost of ExtractMin is still O(log n).

To apply this faster data structure, we keep vertices in the priority queue instead of
edge, where the key for each vertex v is either the minimum-weight edge between v and
the evolving tree T , or∞ if there is no such edge. We can Insert all the vertices into
the priority queue at the beginning of the algorithm; then, whenever we add a new edge
to T , we may need to decrease the keys of some neighboring vertices.

To make the description easier, we break the algorithm into two parts. JarníkInit
initializes the priority queue; Jarník Loop is the main algorithm. The input consists of
the vertices and edges of the graph, plus the start vertex s. For each vertex v, we maintain
both its key key(v) and the incident edge edge(v) such that w(edge(v)) = key(v).

Jarník(V, E, s):
JarníkInit(V, E, s)
JarníkLoop(V, E, s)

JarníkInit(V, E, s):
for each vertex v ∈ V \ {s}

if (v, s) ∈ E
edge(v)← (v, s)
key(v)← w(v, s)

else
edge(v)← Null
key(v)←∞

Insert(v)

JarníkLoop(V, E, s):
T ← ({s},∅)
for i← 1 to |V | − 1

v← ExtractMin
add v and edge(v) to T
for each neighbor u of v

if u /∈ T and key(u)> w(uv)
edge(u)← uv
DecreaseKey(u, w(uv))

The operations Insert and ExtractMin are each called O(V) times once for each
vertex except s, and DecreaseKey is called O(E) times, at most twice for each edge.
Thus, if we use a Fibonacci heap, the improved algorithm runs in O(E + V log V) time,
which is faster than Borůvka’s algorithm unless E = O(V).

In practice, however, this improvement is rarely faster than the naive implementation
using a binary heap, unless the graph is extremely large and dense. The Fibonacci heap
algorithms are quite complex, and the hidden constants in both the running time and
space are significant—not outrageous, but certainly bigger than the hidden constant 1 in
the O(log n) time bound for binary heap operations.

7

7. MINIMUM SPANNING TREES

7.5 Kruskal’s Algorithm

The last minimum spanning tree algorithm I’ll discuss was first described by Joseph
Kruskal in 1956, in the same paper where he rediscovered Jarnik’s algorithm. Kruskal
was motivated by “a typewritten translation (of obscure origin)” of Borůvka’s original
paper, claiming that Borůvka’s algorithm was “unnecessarily elaborate”.² This algorithm
was also rediscovered in 1957 by Loberman and Weinberger, but somehow avoided being
renamed after them.

Kruskal: Scan all edges in increasing weight order; if an edge is safe, add it to F .

8 5
10

2 3

18 16
12

14

30

4 26

8 5
10

3

18 16
12

14

30

4 26

8 5
10

18 16
12

14

30

4 26

8 5
10

18 16
12

14

30

26

18

8
10

16
12

14

30

26

10

16
12

14

30

26

16
12

14

30

26

181816

14

30

26

1816
30

26

18

30

26

18
30

26

30

Kruskal’s algorithm run on the example graph. Thick edges are in F . Dashed edges are useless.
Since we examine the edges in order from lightest to heaviest, any edge we examine

is safe if and only if its endpoints are in different components of the forest F . To prove
this, suppose the edge e joins two components A and B but is not safe. Then there would
be a lighter edge e′ with exactly one endpoint in A. But this is impossible, because
(inductively) any previously examined edge has both endpoints in the same component
of F .

Just as in Borůvka’s algorithm, each component of F has a “leader” node. An edge
joins two components of F if and only if the two endpoints have different leaders. But
unlike Borůvka’s algorithm, we do not recompute leaders from scratch every time we
add an edge. Instead, when two components are joined, the two leaders duke it out in a

2To be fair, Borůvka’s original paper was unnecessarily elaborate, but in his followup paper, also
published in 1927, simplified his algorithm essentially to its current modern form. Kruskal was apparently
unaware of Borůvka’s second paper. Stupid Iron Curtain.

8

Exercises

nationally-televised no-holds-barred steel-cage grudge match.³ One of the two emerges
victorious as the leader of the new larger component. More formally, we will use our
earlier algorithms for the Union-Find problem, where the vertices are the elements and
the components of F are the sets. Here’s a more formal description of the algorithm:

Kruskal(V, E):
sort E by increasing weight
F ← (V,∅)
for each vertex v ∈ V

MakeSet(v)
for i← 1 to |E|

uv← ith lightest edge in E
if Find(u) 6= Find(v)

Union(u, v)
add uv to F

return F

In our case, the sets are components of F , and n= V . Kruskal’s algorithm performs
O(E) Find operations, two for each edge in the graph, and O(V) Union operations, one
for each edge in the minimum spanning tree. Using union-by-rank and path compression
allows us to perform each Union or Find in O(α(E, V)) time, where α is the not-quite-
constant inverse-Ackerman function. So ignoring the cost of sorting the edges, the
running time of this algorithm is O(Eα(E, V)).

We need O(E log E) = O(E log V) additional time just to sort the edges. Since this
is bigger than the time for the Union-Find data structure, the overall running time of
Kruskal’s algorithm is O(E log V), exactly the same as Borůvka’s algorithm, or Jarník’s
algorithm with a normal (non-Fibonacci) heap.

Exercises

1. Most classical minimum-spanning-tree algorithms use the notions of “safe” and
“useless” edges described in the text, but there is an alternate formulation. Let G be
a weighted undirected graph, where the edge weights are distinct. We say that an
edge e is dangerous if it is the longest edge in some cycle in G, and useful if it does
not lie in any cycle in G.

(a) Prove that the minimum spanning tree of G contains every useful edge.

(b) Prove that the minimum spanning tree of G does not contain any dangerous edge.

(c) Describe and analyze an efficient implementation of the “anti-Kruskal” MST
algorithm: Examine the edges of G in decreasing order; if an edge is dangerous,
remove it from G. [Hint: It won’t be as fast as Kruskal’s algorithm.]

3Live at the Assembly Hall! Only $49.95 on Pay-Per-View!⁴
4Is Pay-Per-View still a thing?

9

7. MINIMUM SPANNING TREES

2. Let G = (V, E) be an arbitrary connected graph with weighted edges.

(a) Prove that for any partition of the vertices V into two disjoint subsets, the minimum
spanning tree of G includes the minimum-weight edge with one endpoint in each
subset.

(b) Prove that for any cycle in G, the minimum spanning tree of G excludes the
maximum-weight edge in that cycle.

(c) Prove or disprove: The minimum spanning tree of G includes the minimum-weight
edge in every cycle in G.

3. Throughout this chapter, we assumed that no two edges in the input graph have equal
weights, which implies that the minimum spanning tree is unique. In fact, a weaker
condition on the edge weights implies MST uniqueness.

(a) Describe an edge-weighted graph that has a unique minimum spanning tree, even
though two edges have equal weights.

(b) Prove that an edge-weighted graph G has a unique minimum spanning tree if and
only if the following conditions hold:
• For any partition of the vertices of G into two subsets, the minimum-weight

edge with one endpoint in each subset is unique.
• The maximum-weight edge in any cycle of G is unique.

(c) Describe and analyze an algorithm to determine whether or not a graph has a
unique minimum spanning tree.

4. Consider a path between two vertices s and t in an undirected weighted graph G.
The bottleneck length of this path is the maximum weight of any edge in the path.
The bottleneck distance between s and t is the minimum bottleneck length of any
path from s to t. (If there are no paths from s to t, the bottleneck distance between s
and t is∞. On the other hand, the bottleneck distance from s to itself is −∞.)

1 11

7

128

5
10

9

2

3
6

4

s

t

The bottleneck distance between s and t is 5.
Describe an algorithm to compute the bottleneck distance between every pair of

vertices in an arbitrary undirected weighted graph. Assume that no two edges have
the same weight.

10

Exercises

5. (a) Describe and analyze an algorithm to compute the maximum-weight spanning
tree of a given edge-weighted graph.

(b) A feedback edge set of an undirected graph G is a subset F of the edges such that
every cycle in G contains at least one edge in F . In other words, removing every
edge in F makes the graph G acyclic. Describe and analyze a fast algorithm to
compute the minimum weight feedback edge set of of a given edge-weighted
graph.

6. Suppose we are given both an undirected graph G with weighted edges and a
minimum spanning tree T of G.

(a) Describe an algorithm to update the minimum spanning tree when the weight of
a single edge e is decreased.

(b) Describe an algorithm to update the minimum spanning tree when the weight of
a single edge e is increased.

In both cases, the input to your algorithm is the edge e and its new weight; your
algorithms should modify T so that it is still a minimum spanning tree. [Hint:
Consider the cases e ∈ T and e 6∈ T separately.]

7. (a) Describe and analyze and algorithm to find the second smallest spanning tree of a
given graph G, that is, the spanning tree of G with smallest total weight except
for the minimum spanning tree.

(b) Describe and analyze an efficient algorithm to compute, given a weighted undi-
rected graph G and an integer k, the k spanning trees of G with smallest weight.

8. We say that a graph G = (V, E) is dense if E = Θ(V 2). Describe a modification of
Jarník’s minimum-spanning tree algorithm that runs in O(V 2) time (independent of
E) when the input graph is dense, using only simple data structures (and in particular,
without using a Fibonacci heap).

9. (a) Prove that the minimum spanning tree of a graph is also a spanning tree whose
maximum-weight edge is minimal.

(b) Describe an algorithm to compute a spanning tree whose maximum-weight edge
is minimal, in O(V + E) time. [Hint: Start by computing the median of the edge
weights.]

10. Consider the following variant of Borůvka’s algorithm. Instead of counting and
labeling components of F to find safe edges, we use a standard disjoint set data
structure. Each component of F is represented by an up-tree; each vertex v stores a
pointer parent(v) to its parent in the up-tree containing v. Each leader vertex v̄ also
maintains an edge safe(v̄), which is (eventually) the lightest edge with one endpoint
in v̄’s component of F .

11

7. MINIMUM SPANNING TREES

Borůvka(V, E):
F =∅
for each vertex v ∈ V

parent(v)← v
while FindSafeEdges(V, E)

AddSafeEdges(V, E, F)
return F

FindSafeEdges(V, E):
for each vertex v ∈ V

safe(v)← Null
found← False
for each edge uv ∈ E

ū← Find(u); v̄← Find(v)
if ū 6= v̄

if w(uv)< w(safe(ū))
safe(ū)← uv

if w(uv)< w(safe(v̄))
safe(v̄)← uv

found← True
return done

AddSafeEdges(V, E, F):
for each vertex v ∈ V

if safe(v) 6= Null
x y ← safe(v)
if Find(x) 6= Find(y)

Union(x , y)
add x y to F

Prove that if Find uses path compression, then each call to FindSafeEdges and
AddSafeEdges requires only O(V + E) time. [Hint: It doesn’t matter how Union is
implemented! What is the depth of the up-trees when FindSafeEdges ends?]

11. Minimum-spanning tree algorithms are often formulated using an operation called
edge contraction. To contract the edge uv, we insert a new node, redirect any edge
incident to u or v (except uv) to this new node, and then delete u and v. After
contraction, there may be multiple parallel edges between the new node and other
nodes in the graph; we remove all but the lightest edge between any two nodes.

18

8 5
10

32

18
12

4

14

30
16

26

8
5

10
3

12

4

14

30 16

26

8
5

3

12

4

14

30 16

26

Contracting an edge and removing redundant parallel edges.
The three classical minimum-spanning tree algorithms can be expressed cleanly in
terms of contraction as follows. All three algorithms start by making a clean copy G′

of the input graph G and then repeatedly contract safe edges in G′; the minimum
spanning tree consists of the contracted edges.

• Borůvka: Mark the lightest edge leaving each vertex, contract all marked edges,
and recurse.

12

Exercises

• Jarník: Repeatedly contract the lightest edge incident to some fixed root vertex.
• Kruskal: Repeatedly contract the lightest edge in the graph.

(a) Describe an algorithm to execute a single pass of Borůvka’s contraction algorithm
in O(V + E) time. The input graph is represented in an adjacency list.

(b) Consider an algorithm that first performs k passes of Borůvka’s contraction
algorithm, and then runs Jarník’s algorithm (with a Fibonacci heap) on the
resulting contracted graph.

i. What is the running time of this hybrid algorithm, as a function of V , E,
and k?

ii. For which value of k is this running time minimized? What is the resulting
running time?

(c) Call a family of graphs nice if it has the following properties:

• A nice graph with n vertices has only O(n) edges.
• Contracting an edge of a nice graph yields another nice graph.

For example, graphs that can be drawn in the plane without crossing edges are
nice; Euler’s formula implies that any planar graph with n vertices has at most
3n− 6 edges.

Prove that Borüvka’s contraction algorithm computes the minimum spanning
tree of any nice n-vertex graph in O(n) time.

© Copyright 2016 Jeff Erickson.This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).Free distribution is strongly encouraged; commercial distribution is expressly forbidden.See http://jeffe.cs.illinois.edu/teaching/algorithms for the most recent revision. 13

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu/teaching/algorithms

	Minimum Spanning Trees
	Introduction
	The Only Minimum Spanning Tree Algorithm
	Borůvka's Algorithm
	Jarník's (“Prim’s”) Algorithm
	Kruskal's Algorithm

