
The point is, ladies and gentleman, greed is good. Greed works, greed is right.
Greed clarifies, cuts through, and captures the essence of the evolutionary spirit.
Greed in all its forms, greed for life, money, love, knowledge
has marked the upward surge in mankind.
And greed—mark my words—will save not only Teldar Paper
but the other malfunctioning corporation called the USA.

— Gordon Gekko [Michael Douglas], Wall Street (1987)
There is always an easy solution to every human problem—
neat, plausible, and wrong.

— H. L. Mencken, “The Divine Afflatus” , New York Evening Mail (November 16, 1917)

CHAPTER4
Greedy Algorithms

4.1 Storing Files on Tape

Suppose we have a set of n files that we want to store on a tape. In the future, users will
want to read those files from the tape. Reading a file from tape isn’t like reading a file
from disk; first we have to fast-forward past all the other files, and that takes a significant
amount of time. Let L[1 .. n] be an array listing the lengths of each file; specifically, file i
has length L[i]. If the files are stored in order from 1 to n, then the cost of accessing the
kth file is

cost(k) =
k
∑

i=1

L[i].

The cost reflects the fact that before we read file k we must first scan past all the earlier
files on the tape. If we assume for the moment that each file is equally likely to be
accessed, then the expected cost of searching for a random file is

E[cost] =
n
∑

k=1

cost(k)
n

=
n
∑

k=1

k
∑

i=1

L[i]
n

.

If we change the order of the files on the tape, we change the cost of accessing the
files; some files become more expensive to read, but others become cheaper. Different

© Copyright 2016 Jeff Erickson.This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).Free distribution is strongly encouraged; commercial distribution is expressly forbidden.See http://jeffe.cs.illinois.edu/teaching/algorithms/ for the most recent revision. 1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu/teaching/algorithms/

4. GREEDY ALGORITHMS

file orders are likely to result in different expected costs. Specifically, let π(i) denote
the index of the file stored at position i on the tape. Then the expected cost of the
permutation π is

E[cost(π)] =
n
∑

k=1

k
∑

i=1

L[π(i)]
n

.

Which order should we use if we want the expected cost to be as small as possible?
The answer is intuitively clear; we should store the files in order from shortest to longest.
So let’s prove this.

Lemma 1. E[cost(π)] is minimized when L[π(i)]≤ L[π(i + 1)] for all i.

Proof: Suppose L[π(i)]> L[π(i+1)] for some i. To simplify notation, let a = π(i) and
b = π(i+1). If we swap files a and b, then the cost of accessing a increases by L[b], and
the cost of accessing b decreases by L[a]. Overall, the swap changes the expected cost by
(L[b]− L[a])/n. But this change is an improvement, because L[b]< L[a]. Thus, if the
files are out of order, we can improve the expected cost by swapping some mis-ordered
adjacent pair. �

This example gives us our first greedy algorithm. To minimize the total expected cost
of accessing the files, we put the file that is cheapest to access first, and then recursively
write everything else; no backtracking, no dynamic programming, just make the best
local choice and blindly plow ahead. If we use an efficient sorting algorithm, the running
time is clearly O(n log n), plus the time required to actually write the files. To prove
the greedy algorithm is actually correct, we simply prove that the output of any other
algorithm can be improved by some sort of swap.

Let’s generalize this idea further. Suppose we are also given an array F[1 .. n] of
access frequencies for each file; file i will be accessed exactly F[i] times over the lifetime
of the tape. Now the total cost of accessing all the files on the tape is

Σcost(π) =
n
∑

k=1

�

F[π(k)] ·
k
∑

i=1

L[π(i)]

�

=
n
∑

k=1

k
∑

i=1

�

F[π(k)] · L[π(i)]
�

.

Now what order should store the files if we want to minimize the total cost?
We’ve already proved that if all the frequencies are equal, then we should sort the

files by increasing size. If the frequencies are all different but the file lengths L[i] are
all equal, then intuitively, we should sort the files by decreasing access frequency, with
the most-accessed file first. In fact, this is not hard to prove by modifying the proof of
Lemma 1. But what if the sizes and the frequencies are both different? In this case, we
should sort the files by the ratio L/F .

Lemma 2. Σcost(π) is minimized when
L[π(i)]
F[π(i)]

≤
L[π(i + 1)]
F[π(i + 1)]

for all i.

2

4.2. Scheduling Classes

Proof: Suppose L[π(i)]/F[π(i)] > L[π(i + 1)]/F[π(i + i)] for some i. To simplify
notation, let a = π(i) and b = π(i + 1). If we swap files a and b, then the cost of
accessing a increases by L[b], and the cost of accessing b decreases by L[a]. Overall, the
swap changes the total cost by L[b]F[a]− L[a]F[b]. But this change is an improvement,
since

L[a]
F[a]

>
L[b]
F[b]

=⇒ L[b]F[a]− L[a]F[b]< 0.

Thus, if two adjacent files are out of order, we can improve the total cost by swapping
them. �

4.2 Scheduling Classes

The next example is slightly less trivial. Suppose you decide to drop out of computer
science at the last minute and change your major to Applied Chaos. The Applied Chaos
department offers all of its classes on the same day every week, called ‘Soberday’ by the
students (but interestingly, not by the faculty). Every class has a different start time and
a different ending time: AC 101 (‘Toilet Paper Landscape Architecture’) starts at 10:27pm
and ends at 11:51pm; AC 666 (‘Immanentizing the Eschaton’) starts at 4:18pm and ends
at 7:06pm, and so on. In the interest of graduating as quickly as possible, you want to
register for as many classes as you can. (Applied Chaos classes don’t require any actual
work.) The university’s registration computer won’t let you register for overlapping
classes, and no one in the department knows how to override this ‘feature’. Which classes
should you take?

More formally, suppose you are given two arrays S[1 .. n] and F[1 .. n] listing the start
and finish times of each class; to be concrete, we can assume that 0≤ S[i]< F[i]≤ M
for each i, for some value M (for example, the number of picoseconds in Soberday).
Your task is to choose the largest possible subset X ∈ {1,2, . . . , n} so that for any pair
i, j ∈ X , either S[i] > F[j] or S[j] > F[i]. We can illustrate the problem by drawing
each class as a rectangle whose left and right x-coordinates show the start and finish
times. The goal is to find a largest subset of rectangles that do not overlap vertically.

Figure 4.1. A maximal conflict-free schedule for a set of classes.
This problem has a fairly simple recursive solution, based on the observation that

either you take class 1 or you don’t. Let B4 denote the set of classes that end before class

3

4. GREEDY ALGORITHMS

1 starts, and let L8 denote the set of classes that start later than class 1 ends:

B4 = {i | 2≤ i ≤ n and F[i]< S[1]} L8 = {i | 2≤ i ≤ n and S[i]> F[1]}

If class 1 is in the optimal schedule, then so are the optimal schedules for B4 and L8,
which we can find recursively. If not, we can find the optimal schedule for {2,3, . . . , n}
recursively. So we should try both choices and take whichever one gives the better
schedule. Evaluating this recursive algorithm from the bottom up gives us a dynamic
programming algorithm that runs in O(n2) time. I won’t bother to go through the details,
because we can do better.¹

Intuitively, we’d like the first class to finish as early as possible, because that leaves us
with the most remaining classes. If this greedy strategy works, it suggests the following
very simple algorithm. Scan through the classes in order of finish time; whenever you
encounter a class that doesn’t conflict with your latest class so far, take it!

Figure 4.2. The same classes sorted by finish times and the greedy schedule.
We can write the greedy algorithm somewhat more formally as follows. (Hopefully

the first line is understandable.) The algorithm clearly runs in O(n log n) time.

GreedySchedule(S[1 .. n], F[1 .. n]):
sort F and permute S to match
count← 1
X [count]← 1
for i← 2 to n

if S[i]> F[X [count]]
count← count+ 1
X [count]← i

return X [1 .. count]

1But you should still work out the details yourself. The dynamic programming algorithm can be used
to find the “best” schedule for several different definitions of “best”, but the greedy algorithm I’m about to
describe only works when “best” means “biggest”. Also, you need the practice.

4

4.2. Scheduling Classes

To prove that this algorithm actually gives us a maximal conflict-free schedule, we
use an exchange argument, similar to the one we used for tape sorting. We are not
claiming that the greedy schedule is the only maximal schedule; there could be others.
(See the figures on the previous page.) All we can claim is that at least one of the
maximal schedules is the one that the greedy algorithm produces.

Lemma 3. At least one maximal conflict-free schedule includes the class that finishes first.

Proof: Let f be the class that finishes first. Suppose we have a maximal conflict-free
schedule X that does not include f . Let g be the first class in X to finish. Since f
finishes before g does, f cannot conflict with any class in the set S \ {g}. Thus, the
schedule X ′ = X ∪ { f } \ {g} is also conflict-free. Since X ′ has the same size as X , it is
also maximal. �

To finish the proof, we call on our old friend, induction.

Theorem 4. The greedy schedule is an optimal schedule.

Proof: Let f be the class that finishes first, and let L be the subset of classes the start
after f finishes. The previous lemma implies that some optimal schedule contains f , so
the best schedule that contains f is an optimal schedule. The best schedule that includes
f must contain an optimal schedule for the classes that do not conflict with f , that is,
an optimal schedule for L. The greedy algorithm chooses f and then, by the inductive
hypothesis, computes an optimal schedule of classes from L. �

The proof might be easier to understand if we unroll the induction slightly.

Proof: Let 〈g1, g2, . . . , gk〉 be the sequence of classes chosen by the greedy algorithm.
Suppose we have a maximal conflict-free schedule of the form

〈g1, g2, . . . , g j−1, c j , c j+1, . . . , cm〉,

where class c j is different from the class g j that would be chosen by the greedy algorithm.
(We may have j = 1, in which case this schedule starts with a non-greedy choice
c1.) By construction, the jth greedy choice g j does not conflict with any earlier class
g1, g2, . . . , g j−1, and since our schedule is conflict-free, neither does c j . Moreover, g j has
the earliest finish time among all classes that don’t conflict with the earlier classes; in
particular, g j finishes before c j. This implies that g j does not conflict with any of the
later classes c j+1, . . . , cm. Thus, the schedule

〈g1, g2, . . . , g j−1, g j , c j+1, . . . , cm〉,

is conflict-free. (This argument is just a generalization of Lemma 3, which considers the
case j = 1.)

5

4. GREEDY ALGORITHMS

By induction, it now follows that there is an optimal schedule 〈g1, g2, . . . , gk, ck+1, . . . , cm〉
that includes every class chosen by the greedy algorithm. But this is impossible unless
k = m; if some class ck+1 does not conflict with any of the first k greedy classes, then the
greedy algorithm would choose more than k classes! �

4.3 General Structure

The basic structure of this correctness proof is exactly the same as for the tape-sorting
problem: an inductive exchange argument.

• Assume that there is an optimal solution that is different from the greedy solution.

• Find the “first” difference between the two solutions.

• Argue that we can exchange the optimal choice for the greedy choice without
degrading the solution.

This argument implies by induction that some optimal solution contains the entire greedy
solution, and therefore equals the greedy solution. Sometimes, as in the scheduling
problem, an additional step is required to show no optimal solution strictly improves the
greedy solution.

4.4 Huffman Codes

A binary code assigns a string of 0s and 1s to each character in the alphabet. A binary
code is prefix-free if no code is a prefix of any other. 7-bit ASCII and Unicode’s UTF-8 are
both prefix-free binary codes. Morse code is a binary code, but it is not prefix-free; for
example, the code for S (· · ·) includes the code for E (·) as a prefix.² Any prefix-free
binary code can be visualized as a binary tree with the encoded characters stored at
the leaves. The code word for any symbol is given by the path from the root to the
corresponding leaf; 0 for left, 1 for right. The length of a codeword for a symbol is the
depth of the corresponding leaf.

Let me emphasize that binary code trees are not binary search trees; we don’t care
at all about the order of symbols at the leaves.

Suppose we want to encode messages in an n-character alphabet so that the encoded
message is as short as possible. Specifically, given an array frequency counts f [1 .. n], we
want to compute a prefix-free binary code that minimizes the total encoded length of
the message:³

n
∑

i=1

f [i] · depth(i).

2For this reason, Morse is perhaps better described as a prefix-free ternary code, with three symbols: ·,
—, and pause.

3This looks almost exactly like the cost of a binary search tree, but the optimization problem is very
different: code trees are not required to keep the keys in any particular order.

6

4.4. Huffman Codes

In 1951, as a PhD student at MIT, David Huffman developed the following greedy
algorithm to produce such an optimal code:⁴

Huffman: Merge the two least frequent letters and recurse.

For example, suppose we want to encode the following helpfully self-descriptive sentence,
discovered by Lee Sallows:⁵

This sentence contains three a’s, three c’s, two d’s, twenty-six e’s, five f’s, three g’s,
eight h’s, thirteen i’s, two l’s, sixteen n’s, nine o’s, six r’s, twenty-seven s’s, twenty-
two t’s, two u’s, five v’s, eight w’s, four x’s, five y’s, and only one z.

To keep things simple, let’s forget about the forty-four spaces, nineteen apostrophes,
nineteen commas, three hyphens, and only one period, and just encode the letters.
Here’s the frequency table:

A C D E F G H I L N O R S T U V W X Y Z
3 3 2 26 5 3 8 13 2 16 9 6 27 22 2 5 8 4 5 1

Huffman’s algorithm picks out the two least frequent letters, breaking ties arbitrarily—in
this case, say, Z and D—and merges them together into a single new character DZ with
frequency 3. This new character becomes an internal node in the code tree we are
constructing, with Z and D as its children; it doesn’t matter which child is which. The
algorithm then recursively constructs a Huffman code for the new frequency table

A C E F G H I L N O R S T U V W X Y DZ
3 3 26 5 3 8 13 2 16 9 6 27 22 2 5 8 4 5 3

After 19 merges, all 20 characters have been merged together. The record of merges
gives us our code tree. The algorithm makes a number of arbitrary choices; as a result,
there are actually several different Huffman codes. One such code is shown below. For
example, the code for A is 110000, and the code for S is 00.

If we use this code, the encoded message starts like this:

1001
T

0100
H

1101
I

00
S

00
S

111
E

011
N

1001
T

111
E

011
N

110001
C

111
E

110001
C

10001
O

011
N

1001
T
· · ·

Here is the list of costs for encoding each character in the example message, along with
that character’s contribution to the total length of the encoded message:

4Huffman was a student in an information theory class taught by Robert Fano, who was a close colleague
of Claude Shannon, the father of information theory. Fano and Shannon had previously developed a
different greedy algorithm for producing prefix codes—split the frequency array into two subarrays as
evenly as possible, and then recursively build a code for each subarray—but these Fano-Shannon codes
were known not to be optimal. Fano posed the (then open) problem of finding an optimal encoding to his
class; Huffman solved the problem as a class project, in lieu of taking a final exam.

5A. K. Dewdney. Computer recreations. Scientific American, October 1984. Douglas Hofstadter published
a few earlier examples of Lee Sallows’ self-descriptive sentences in his Scientific American column in January
1982.

7

4. GREEDY ALGORITHMS

170

59 111

32 60 51

25

12

6 6

3

39 21

17 10 11

8

4

16

S
27

N
16

W
8

H
8

X
4

O
9

T
22

F
5

V
5

Y
5

R
6

A
3

C
3

G
3

D
2

Z
1

I
13

E
26

U
2

L
2

Figure 4.3. A Huffman code for Lee Sallows’ self-descriptive sentence; the numbers are frequencies for mergedcharacters

char. A C D E F G H I L N O R S T U V W X Y Z

freq. 3 3 2 26 5 3 8 13 2 16 9 6 27 22 2 5 8 4 5 1

depth 6 6 7 3 5 6 4 4 7 3 4 4 2 4 7 5 4 6 5 7

total 18 18 14 78 25 18 32 52 14 48 36 24 54 88 14 25 32 24 25 7

Altogether, the encoded message is 646 bits long. Different Huffman codes would assign
different codes, possibly with different lengths, to various characters, but the overall
length of the encoded message is the same for any Huffman code: 646 bits.

Given the simple structure of Huffman’s algorithm, it’s rather surprising that it
produces an optimal prefix-free binary code. Encoding Lee Sallows’ sentence using any
prefix-free code requires at least 646 bits! Fortunately, the recursive structure makes this
claim easy to prove using an exchange argument, similar to our earlier optimality proofs.
We start by proving that the algorithm’s very first choice is correct.

Lemma 5. Let x and y be the two least frequent characters (breaking ties between equally
frequent characters arbitrarily). There is an optimal code tree in which x and y are
siblings.

Proof: I’ll actually prove a stronger statement: There is an optimal code in which x
and y are siblings and have the largest depth of any leaf.

Let T be an optimal code tree, and suppose this tree has depth d. Since T is a
full binary tree, it has at least two leaves at depth d that are siblings. (Verify this by
induction!) Suppose those two leaves are not x and y, but some other characters a
and b.

8

4.4. Huffman Codes

Let T ′ be the code tree obtained by swapping x and a. The depth of x increases by
some amount ∆, and the depth of a decreases by the same amount. Thus,

cost(T ′) = cost(T)− (f [a]− f [x])∆.

By assumption, x is one of the two least frequent characters, but a is not, which implies
that f [a]≥ f [x]. Thus, swapping x and a does not increase the total cost of the code.
Since T was an optimal code tree, swapping x and a does not decrease the cost, either.
Thus, T ′ is also an optimal code tree (and incidentally, f [a] actually equals f [x]).

Similarly, swapping y and b must give yet another optimal code tree. In this final
optimal code tree, x and y are maximum-depth siblings, as required. �

Now optimality is guaranteed by our dear friend the Recursion Fairy! Essentially
we’re relying on the following recursive definition for a full binary tree: either a single
node, or a full binary tree where some leaf has been replaced by an internal node with
two leaf children.

Theorem 6. Huffman codes are optimal prefix-free binary codes.

Proof: If the message has only one or two different characters, the theorem is trivial.
Otherwise, let f [1 .. n] be the original input frequencies, where without loss of

generality, f [1] and f [2] are the two smallest. To keep things simple, let f [n+ 1] =
f [1] + f [2]. By the previous lemma, we know that some optimal code for f [1 .. n] has
characters 1 and 2 as siblings.

Let T ′ be the Huffman code tree for f [3 .. n+ 1]; the inductive hypothesis implies
that T ′ is an optimal code tree for the smaller set of frequencies. To obtain the final
code tree T , we replace the leaf labeled n+ 1 with an internal node with two children,
labelled 1 and 2. I claim that T is optimal for the original frequency array f [1 .. n].

To prove this claim, we can express the cost of T in terms of the cost of T ′ as follows.
(In these equations, depth(i) denotes the depth of the leaf labelled i in either T or T ′; if
the leaf appears in both T and T ′, it has the same depth in both trees.)

cost(T) =
n
∑

i=1

f [i] · depth(i)

=
n+1
∑

i=3

f [i] · depth(i) + f [1] · depth(1) + f [2] · depth(2)− f [n+ 1] · depth(n+ 1)

= cost(T ′) + f [1] · depth(1) + f [2] · depth(2)− f [n+ 1] · depth(n+ 1)

= cost(T ′) + (f [1] + f [2]) · depth(T)− f [n+ 1] · (depth(T)− 1)

= cost(T ′) + f [1] + f [2]

This equation implies that minimizing the cost of T is equivalent to minimizing the cost
of T ′; in particular, attaching leaves labeled 1 and 2 to the leaf in T ′ labeled n+ 1 gives
an optimal code tree for the original frequencies. �

9

4. GREEDY ALGORITHMS

To actually implement Huffman codes efficiently, we keep the characters in a min-
heap, where the priority of each character is its frequency. We can construct the code
tree by keeping three arrays of indices, listing the left and right children and the parent
of each node. The root of the tree is the node with index 2n− 1.

BuildHuffman(f [1 .. n]):
for i← 1 to n

L[i]← 0; R[i]← 0
Insert(i, f [i])

for i← n to 2n− 1
x ← ExtractMin()
y ← ExtractMin()
f [i]← f [x] + f [y]
L[i]← x; R[i]← y
P[x]← i; P[y]← i
Insert(i, f [i])

P[2n− 1]← 0

The algorithm performs O(n)min-heap operations. If we use a balanced binary tree as the
heap, each operation requires O(log n) time, so the total running time of BuildHuffman
is O(n log n).

Finally, here are simple algorithms to encode and decode messages:

HuffmanEncode(A[1 .. k]):
m← 1
for i← 1 to k

HuffmanEncodeOne(A[i])

HuffmanEncodeOne(x):
if x < 2n− 1

HuffmanEncodeOne(P[x])
if x = L[P[x]]

B[m]← 0
else

B[m]← 1
m← m+ 1

HuffmanDecode(B[1 .. m]):
k← 1
v← 2n− 1
for i← 1 to m

if B[i] = 0
v← L[v]

else
v← R[v]

if L[v] = 0
A[k]← v
k← k+ 1
v← 2n− 1

10

Exercises

Exercises

Caveat lector: Whenever you describe and analyze a greedy algorithm, you must also
include a proof that your algorithm is correct; this proof will typically take the form of an
exchange argument. These proofs are especially important in classes (like mine) that do
not normally require proofs of correctness. It is incredibly tempting to think that almost
any problem can be solved using a greedy algorithm—especially if you’re uncomfortable
with recursion, or if you forget that correctness is more important than speed—but it
just ain’t so.

1. For each of the following alternative greedy algorithms for the class scheduling
problem, either prove that the algorithm always constructs an optimal schedule, or
describe a small input example for which the algorithm does not produce an optimal
schedule. Assume that all algorithms break ties arbitrarily (that is, in a manner that
is completely out of your control).

(a) Choose the course x that ends last, discard classes that conflict with x , and
recurse.

(b) Choose the course x that starts first, discard all classes that conflict with x , and
recurse.

(c) Choose the course x that starts last, discard all classes that conflict with x , and
recurse.

(d) Choose the course x with shortest duration, discard all classes that conflict with x ,
and recurse.

(e) Choose a course x that conflicts with the fewest other courses, discard all classes
that conflict with x , and recurse.

(f) If no classes conflict, choose them all. Otherwise, discard the course with longest
duration and recurse.

(g) If no classes conflict, choose them all. Otherwise, discard a course that conflicts
with the most other courses and recurse.

(h) Let x be the class with the earliest start time, and let y be the class with the
second earliest start time.
• If x and y are disjoint, choose x and recurse on everything but x .
• If x completely contains y , discard x and recurse.
• Otherwise, discard y and recurse.

(i) If any course x completely contains another course, discard x and recurse.
Otherwise, choose the course y that ends last, discard all classes that conflict
with y , and recurse.

2. Now consider a weighted version of the class scheduling problem, where different
classes offer different number of credit hours (totally unrelated to the duration of the

11

4. GREEDY ALGORITHMS

class lectures). Your goal is now to choose a set of non-conflicting classes that give
you the largest possible number of credit hours, given an array of start times, end
times, and credit hours as input.

(a) Prove that the greedy algorithm described in the notes — Choose the class that
ends first and recurse — does not always return an optimal schedule.

(b) Describe and analyze an algorithm to compute the optimal schedule. [Hint: Your
algorithm will not be greedy.]

3. Let X be a set of n intervals on the real line. A subset of intervals Y ⊆ X is called a
tiling path if the intervals in Y cover the intervals in X , that is, any real value that is
contained in some interval in X is also contained in some interval in Y . The size of a
tiling cover is just the number of intervals.

Describe and analyze an algorithm to compute the smallest tiling path of X
as quickly as possible. Assume that your input consists of two arrays L[1 .. n] and
R[1 .. n], representing the left and right endpoints of the intervals in X . If you use a
greedy algorithm, you must prove that it is correct.

A set of intervals. The seven shaded intervals form a tiling path.

4. Let X be a set of n intervals on the real line. We say that a set P of points stabs X if
every interval in X contains at least one point in P. Describe and analyze an efficient
algorithm to compute the smallest set of points that stabs X . Assume that your
input consists of two arrays X L[1 .. n] and XR[1 .. n], representing the left and right
endpoints of the intervals in X . As usual, If you use a greedy algorithm, you must
prove that it is correct.

A set of intervals stabbed by four points (shown here as vertical segments)

5. Let X be a set of n intervals on the real line. A proper coloring of X assigns a color
to each interval, so that any two overlapping intervals are assigned different colors.
Describe and analyze an efficient algorithm to compute the minimum number of
colors needed to properly color X . Assume that your input consists of two arrays
L[1 .. n] and R[1 .. n], where L[i] and R[i] are the left and right endpoints of the ith
interval. As usual, if you use a greedy algorithm, you must prove that it is correct.

12

Exercises

1
2

5
1

44

2

5

3
4

1
3

5

3 3 2

A proper coloring of a set of intervals using five colors.

6. Suppose you are a simple shopkeeper living in a country with n different types of
coins, with values 1 = c[1] < c[2] < · · · < c[n]. (In the U.S., for example, n = 6
and the values are 1, 5, 10, 25, 50 and 100 cents.) Your beloved and benevolent
dictator, El Generalissimo, has decreed that whenever you give a customer change,
you must use the smallest possible number of coins, so as not to wear out the image
of El Generalissimo lovingly engraved on each coin by servants of the Royal Treasury.

(a) In the United States, there is a simple greedy algorithm that always results in the
smallest number of coins: subtract the largest coin and recursively give change for
the remainder. El Generalissimo does not approve of American capitalist greed.
Show that there is a set of coin values for which the greedy algorithm does not
always give the smallest possible of coins.

(b) Now suppose El Generalissimo decides to impose a currency system where the
coin denominations are consecutive powers b0, b1, b2, . . . , bk of some integer
b ≥ 2. Prove that despite El Generalissimo’s disapproval, the greedy algorithm
described in part (a) does make optimal change in this currency system.

(c) Describe and analyze an efficient algorithm to determine, given a target amount T
and a sorted array c[1 .. n] of coin denominations, the smallest number of coins
needed to make T cents in change. Assume that c[1] = 1, so that it is possible to
make change for any amount T .

7. Suppose you are given an array A[1 .. n] of integers, each of which may be positive,
negative, or zero. A contiguous subarray A[i .. j] is called a positive interval if
the sum of its entries is greater than zero. Describe and analyze an algorithm to
compute the minimum number of positive intervals that cover every positive entry
in A. For example, given the following array as input, your algorithm should output
the number 3.

sum=2
︷ ︸︸ ︷

sum=1
︷ ︸︸ ︷

sum=7
︷ ︸︸ ︷

+3 −5 +7 −4 +1 −8 +3 −7 +5 −9 +5 −2 +4

8. Consider the following process. At all times you have a single positive integer x ,
which is initially equal to 1. In each step, you can either increment x or double x .
Your goal is to produce a target value n. For example, you can produce the integer 10
in four steps as follows:

1
+1
−→ 2

×2
−→ 4

+1
−→ 5

×2
−→ 10

13

4. GREEDY ALGORITHMS

Obviously you can produce any integer n using exactly n − 1 increments, but for
almost all values of n, this is horribly inefficient. Describe and analyze an algorithm
to compute the minimum number of steps required to produce any given integer n.

9. You accept a job delivering burritos from San Francisco to New York City by driving
a Burrito-Delivery Vehicle through the new Transcontinental Underground Burrito-
Delivery Tube, which runs in a direct line between these two cities.

The Burrito-Delivery Vehicle runs on single-use batteries, which must be replaced
after at most 100 miles. The actual fuel is virtually free, but the batteries are expen-
sive and must be installed by official Burrito-Delivery Vehicle Battery-Replacement
Technicians.⁶ Thus, even if you replace your battery early, you must still pay full price
for the new battery to be installed. Moreover, your Vehicle is too small to carry more
than one battery at a time.

There are several fueling stations along the Tube; each station charges a different
price for installing a new battery. Before you start your trip, you carefully print the
Wikipedia page listing the locations and prices of every fueling station along the Tube.
Given this information, how do you decide the best places to stop for fuel?

More formally, suppose you are given two arrays D[1 .. n] and C[1 .. n], where
D[i] is the distance from the start of the Tube to the ith station, and C[i] is the cost
to replace your battery at the ith station. Assume that your trip starts and ends at
fueling stations (so D[1] = 0 and D[n] is the total length of your trip), and that your
car starts with an empty battery (so you must install a new battery at station 1).

(a) Describe and analyze a greedy algorithm to find the minimum number of refueling
stops needed to complete your trip. Don’t forget to prove that your algorithm is
correct.

(b) But what you really want to minimize is the total cost of travel. Show that your
greedy algorithm in part (a) does not produce an optimal solution when extended
to this setting.

(c) Describe an efficient algorithm to compute the locations of the fuel stations you
should stop at to minimize the total cost of travel.

10. Suppose we are given two arrays C[1 .. n] and R[1 .. n] of positive integers. An n× n
matrix of 0s and 1s agrees with R and C if, for every index i, the ith row contains
R[i] 1s, and the ith column contains C[i] 1s. Describe and analyze an algorithm that
either constructs a matrix that agrees with R and C , or correctly reports that no such
matrix exists.

11. Suppose we have n skiers with heights given in an array P[1 .. n], and n skis with
heights given in an array S[1 .. n]. Describe an efficient algorithm to assign a ski

6or as they call themselves in German, Burritolieferfahrzeugbatteriewechseltechniker

14

Exercises

to each skier, so that the average difference between the height of a skier and her
assigned ski is as small as possible. The algorithm should compute a permutation σ
such that the expression

1
n

n
∑

i=1

�

�P[i]− S[σ(i)]
�

�

is as small as possible.

12. You’ve been hired to store a sequence of n books on shelves in a library. The order of
the books is fixed by the cataloging system and cannot be changed; each shelf must
store a contiguous interval of the given sequence of books. You are given two arrays
H[1 .. n] and T[1 .. n], where H[i] and T[i] are respectively the height and thickness
of the ith book in the sequence. All shelves in this library have the same length L;
the total thickness of all books on any single shelf cannot exceed L.

(a) Suppose all the books have the same height h (that is, H[i] = h for all i) and the
shelves have height larger than h, so each book fits on every shelf. Describe and
analyze a greedy algorithm to store the books in as few shelves as possible. [Hint:
The algorithm is obvious, but why is it correct?]

(b) That was a nice warmup, but now here’s the real problem. In fact the books have
different heights, but you can adjust the height of each shelf to match the tallest
book on that shelf. (In particular, you can change the height of any empty shelf
to zero.) Now your task is to store the books so that the sum of the heights of the
shelves is as small as possible. Show that your greedy algorithm from part (a)
does not always give the best solution to this problem.

(c) Describe and analyze an algorithm to find the best assignment of books to shelves
as described in part (b).

13. Alice wants to throw a party and she is trying to decide who to invite. She has n
people to choose from, and she knows which pairs of these people know each other.
She wants to pick as many people as possible, subject to two constraints:

• For each guest, there should be at least five other guests that they already know.

• For each guest, there should be at least five other guests that they don’t already
know.

Describe and analyze an algorithm that computes the largest possible number of
guests Alice can invite, given a list of n people and the list of pairs who know each
other.

14. One day, Alex got tired of climbing in a gym and decided to take a very large group
of climber friends outside to climb. The climbing area where they went, had a huge
wide boulder, not very tall, with various marked hand and foot holds. Alex quickly

15

4. GREEDY ALGORITHMS

determined an “allowed” set of moves that her group of friends can perform to get
from one hold to another.

The overall system of holds can be described by a rooted tree T with n vertices,
where each vertex corresponds to a hold and each edge corresponds to an allowed
move between holds. The climbing paths converge as they go up the boulder, leading
to a unique hold at the summit, represented by the root of T .

Alex and her friends (who are all excellent climbers) decided to play a game,
where as many climbers as possible are simultaneously on the boulder and each
climber needs to perform a sequence of exactly k moves. Each climber can choose an
arbitrary hold to start from, and all moves must move away from the ground. Thus,
each climber traces out a path of k edges in the tree T , all directed toward the root.
However, no two climbers are allowed to touch the same hold; the paths followed by
different climbers cannot intersect at all.

(a) Describe and analyze a greedy algorithm to compute the maximum number of
climbers that can play this game. Your algorithm is given a rooted tree T and an
integer k as input, and it should compute the largest possible number of disjoint
paths in T , where each path has length k. Do not assume that T is a binary tree.
For example, given the tree below as input, your algorithm should return the
integer 8.

Seven disjoint paths of length k = 3. This is not the largest such set of paths in this tree.
(b) Now suppose each vertex in T has an associated reward, and your goal is to

maximize the total reward of the vertices in your paths, instead of the total
number of paths. Show that your greedy algorithm does not always return the
optimal reward.

(c) Describe an efficient algorithm to compute the maximum possible reward, as
described in part (b).

15. Recall that a string w of parentheses (and) is balanced if it satisfies one of the
following conditions:

16

Exercises

• w is the empty string.

• w= (x) for some balanced string x

• w= x y for some balanced strings x and y

For example, the string

w= ((())()())(()())()

is balanced, because w= x y , where

x = ((())()()) and y = (()())().

(a) Describe and analyze an algorithm to determine whether a given string of
parentheses is balanced.

(b) Describe and analyze a greedy algorithm to compute the length of a longest
balanced subsequence of a given string of parentheses. As usual, don’t forget to
prove your algorithm is correct.

For both problems, your input is an array w[1 .. n], where for each i, either w[i] = (
or w[i] =). Both of your algorithms should run in O(n) time.

16. Congratulations! You have successfully conquered Camelot, transforming the former
battle-scarred kingdom with an anarcho-syndicalist commune, where citizens take
turns to act as a sort of executive-officer-for-the-week, but with all the decisions of
that officer ratified at a special bi-weekly meeting, by a simple majority in the case of
purely internal affairs, but by a two-thirds majority in the case of more major. . . .

As a final symbolic act, you order the Round Table (surprisingly, an actual circular
table) to be split into pizza-like wedges and distributed to the citizens of Camelot
as trophies. Each citizen has submitted a request for an angular wedge of the table,
specified by two angles—for example: Sir Robin the Brave might request the wedge
from 17.23◦ to 42◦, and Sir Lancelot the Pure might request the 2◦ wedge from 359◦

to 1◦. Each citizen will be happy if and only if they receive precisely the wedge that
they requested. Unfortunately, some of these ranges overlap, so satisfying all the
citizens’ requests is simply impossible. Welcome to politics.

Describe and analyze an algorithm to find the maximum number of requests that
can be satisfied. [Hint: Careful! The output of your algorithm must not change if you
rotate the table. Do not assume that angles are integers.]

17. Suppose you are standing in a field surrounded by several large balloons. You want
to use your brand new Acme Brand Zap-O-MaticTM to pop all the balloons, without
moving from your current location. The Zap-O-MaticTM shoots a high-powered laser
beam, which pops all the balloons it hits. Since each shot requires enough energy to
power a small country for a year, you want to fire as few shots as possible.

17

4. GREEDY ALGORITHMS

Nine balloons popped by 4 shots of the Zap-O-MaticTM

The minimum zap problem can be stated more formally as follows. Given a set C
of n circles in the plane, each specified by its radius and the (x , y) coordinates of its
center, compute the minimum number of rays from the origin that intersect every
circle in C . Your goal is to find an efficient algorithm for this problem.

(a) Suppose it is possible to shoot a ray that does not intersect any balloons. Describe
and analyze a greedy algorithm that solves the minimum zap problem in this
special case. [Hint: See Exercise 2.]

(b) Describe and analyze a greedy algorithm whose output is within 1 of optimal.
That is, if m is the minimum number of rays required to hit every balloon, then
your greedy algorithm must output either m or m+1. (Of course, you must prove
this fact.)

(c) Describe an algorithm that solves the minimum zap problem in O(n2) time.

(d) Describe an algorithm that solves the minimum zap problem in O(n log n) time.

Assume you have a subroutine Intersects(r, c) that determines whether an
arbitrary ray r intersects an arbitrary circle c in O(1) time. This subroutine is not
difficult to write, but it’s not the interesting part of the problem.

© Copyright 2016 Jeff Erickson.This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).Free distribution is strongly encouraged; commercial distribution is expressly forbidden.See http://jeffe.cs.illinois.edu/teaching/algorithms/ for the most recent revision.18

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu/teaching/algorithms/

	Greedy Algorithms
	Storing Files on Tape
	Scheduling Classes
	General Structure
	Huffman Codes

