
Discussion 13b: Friday, April 24, 2020 Version: 1.0 CS/ECE 374 B, Spring 2020

1 A Hamiltonian cycle in a graph G is a cycle that goes through every vertex of G exactly once. Deciding
whether an arbitrary graph contains a Hamiltonian cycle is NP-Hard.

A tonian cycle in a graph G is a cycle that goes through at least half of the vertices of G. Prove that
deciding whether a graph contains a tonian cycle is NP-Hard.

Solution:
[duplicate the graph] I will describe a polynomial-time reduction from HamiltonianCycle. Let G be an
arbitrary graph (which is the given instance of HamiltonianCycle). Let H be a graph consisting of two
disjoint copies of G, with no edges between them; call these copies G1 and G2. I claim that G has a
Hamiltonian cycle if and only if H has a tonian cycle.

=⇒ Suppose G has a Hamilton cycle C. Let C1 be the corresponding cycle in G1. C1 contains exactly
half of the vertices of H, and thus is a Hamiltonian cycle in H.

⇐= On the other hand, suppose H has a tonian cycle C. Because there are no edges between the
subgraphs G1 and G2, this cycle must lie entirely within one of these two subgraphs. G1 and G2

each contain exactly half the vertices of H, so C must also contain exactly half the vertices of H,
and thus is a Hamiltonian cycle in either G1 or G2. But G1 and G2 are just copies of G. We
conclude that G has a Hamiltonian cycle.

Given G, we can construct H in polynomial time by brute force.

Solution:
[add n new vertices] WE describe a polynomial-time reduction from HamiltonianCycle. Let G be an
arbitrary graph, and suppose G has n vertices. Let H be a graph obtained by adding n new vertices to
G, but no additional edges. The claim is that G has a Hamiltonian cycle ⇐⇒ H has a tonian cycle.

=⇒ Suppose G has a Hamiltonian cycle C. Then C visits exactly half the vertices of H, and thus is a
tonian cycle in H.

⇐= On the other hand, suppose H has a tonian cycle C. This cycle cannot visit any of the new vertices,
so it must lie entirely within the subgraph G. Since G contains exactly half the vertices of H, the
cycle C must visit every vertex of G, and thus is a Hamiltonian cycle in G.

Given G, we can construct H in polynomial time by brute force.

2 Big Clique is the following decision problem: given a graph G = (V,E), does G have a clique of size at
least n/2 where n = |V | is the number of nodes? Prove that Big Clique is NP-hard.

Solution:
Recall that an instance of Clique consists of a graph G = (V,E) and integer k. (G, k) is a YES
instance if G has a clique of size at least k, otherwise it is a NO instance. For simplicity we will assume
n is an even number.

We describe a polynomial-time reduction from Clique to Big Clique. We consider two cases depend-
ing on whether k ≤ n/2 or not. If k ≤ n/2 we obtain a graph G′ = (V ′, E′) as follows. We add a set

1

of X new vertices where |X| = n − 2k; thus V ′ = V]X. We make X a clique by adding all possible
edges between vertices of X. In addition we connect each vertex v ∈ X to each vertex u ∈ V . In other
words E′ = E ∪ {(u, v) | u ∈ V, v ∈ X} ∪ {(a, b) | a, b ∈ X}. If k > n/2 we let G′ = (V ′, E′) where
V ′ = V]X and E′ = E, where |X| = 2k − n. In other words we add 2k − n new vertices which are
isolated and have no edges incident on them.

We make the following relatively easy claims that we leave as exercises.

Claim 0.1. Suppose k ≤ n/2. Then for any clique S in G, S ∪X is a clique in G′. For any clique
S′ ∈ G′ the set S′ \X is a clique in G.

Claim 0.2. Suppose k > n/2. Then S is a clique in G′ iff S ∩X = ∅ and S is a clique in G.

Now we prove the correctness of the reduction. We need to show that G has a clique of size k if and
only if G′ has a clique of size n′/2 where n′ is the number of nodes in G′.

=⇒ Suppose G has a clique S of size k. We consider two cases. If k > n/2 then n′ = n+ 2k− n = 2k;
note that S is a clique in G′ as well and hence S is a big clique in G′ since |S| = k ≥ n′/2. If
k ≤ n/2, by the first claim, S ∪X is a clique in G′ of size k+ |X| = k+n− 2k = n− k. Moreover,
n′ = n+ n− 2k = 2n− 2k and hence S ∪X is a big clique in G′. Thus, in both cases G′ has a big
clique.

⇐= Suppose G′ has a clique of size at least n′/2 in G′. Let it be S′; |S′| ≥ n′/2. We consider two cases
again. If k ≤ n/2, we have n′ = 2n−2k and |S′| ≥ n−k. By the first claim, S = S′ \X is a clique
in G. |S| ≥ |S′| − |X| ≥ n− k − (n− 2k) ≥ k. Hence G has a clique of size k. If k > n/2, by the
second claim S′ is a clique in G and |S′| ≥ n′/2 = (n+ 2k − n)/2 = k. Therefore, in this case as
well G has a clique of size k.

3 Recall the following kColor problem: Given an undirected graph G, can its vertices be colored with k
colors, so that every edge touches vertices with two different colors?

3.A. Describe a direct polynomial-time reduction from 3Color to 4Color.

Solution:
Suppose we are given an arbitrary graph G. Let H be the graph obtained from G by adding a
new vertex a (called an apex) with edges to every vertex of G. I claim that G is 3-colorable if and
only if H is 4-colorable.

=⇒ Suppose G is 3-colorable. Fix an arbitrary 3-coloring of G, and call the colors “red”, “green”,
and “blue”. Assign the new apex a the color “plaid”. Let uv be an arbitrary edge in H.
– If both u and v are vertices in G, they have different colors.
– Otherwise, one endpoint of uv is plaid and the other is not, so u and v have different

colors.
We conclude that we have a valid 4-coloring of H, so H is 4-colorable.

⇐= Suppose H is 4-colorable. Fix an arbitrary 4-coloring; call the apex’s color “plaid” and the
other three colors “red”, “green”, and “blue”. Each edge uv in G is also an edge of H and
therefore has endpoints of two different colors. Each vertex v in G is adjacent to the apex and
therefore cannot be plaid. We conclude that by deleting the apex, we obtain a valid 3-coloring
of G, so G is 3-colorable.

We can easily transform G into H in polynomial time by brute force.

2

3.B. Prove that kColor problem is NP-hard for any k ≥ 3.

Solution:
[direct] The lecture notes include a proof that 3Color is NP-hard. For any integer k > 3, I will
describe a direct polynomial-time reduction from 3Color to kColor.
Let G be an arbitrary graph. Let H be the graph obtain from G by adding k − 3 new vertices
a1, a2, . . . , ak−3, each with edges to every other vertex in H (including the other ai’s). I claim that
G is 3-colorable if and only if H is k-colorable.

=⇒ Suppose G is 3-colorable. Fix an arbitrary 3-coloring of G. Color the new vertices
a1, a2, . . . , ak−3 with k − 3 new distinct colors. Every edge in H is either an edge in G or
uses at least one new vertex ai; in either case, the endpoints of the edge have different colors.
We conclude that H is k-colorable.

⇐= Suppose H is k-colorable. Each vertex ai is adjacent to every other vertex in H, and therefore
is the only vertex of its color. Thus, the vertices of G use only three distinct colors. Every
edge of G is also an edge of H, so its endpoints have different colors. We conclude that the
induced coloring of G is a proper 3-coloring, so G is 3-colorable.

Given G, we can construct H in polynomial time by brute force.

Solution:
[induction] Let k be an arbitrary integer with k ≥ 3. Assume that jColor is NP-hard for any
integer 3 ≤ j < k. There are two cases to consider.

• If k = 3, then kColor is NP-hard by the reduction from 3Sat in the lecture notes.
• Suppose k = 3. The reduction in part (a) directly generalizes to a polynomial-time reduction

from (k− 1)Color to kColor: To decide whether an arbitrary graph G is (k− 1)-colorable,
add an apex and ask whether the resulting graph is k-colorable. The induction hypothesis
implies that (k − 1)Color is NP-hard, so the reduction implies that kColor is NP-hard.

In both cases, we conclude that kColor is NP-hard.

To think about later:

4 Let G be an undirected graph with weighted edges. A Hamiltonian cycle in G is heavy if the total weight
of edges in the cycle is at least half of the total weight of all edges in G. Prove that deciding whether a
graph contains a heavy Hamiltonian cycle is NP-hard.

Solution:
[two new vertices] I will describe a polynomial-time a reduction from the Hamiltonian path problem.
Let G be an arbitrary undirected graph (without edge weights). Let H be the edge-weighted graph
obtained from G as follows:

• Add two new vertices s and t.

• Add edges from s and t to all the other vertices (including each other).

• Assign weight 1 to the edge st and weight 0 to every other edge.

The total weight of all edges in H is 1. Thus, a Hamiltonian cycle in H is heavy if and only if it contains
the edge st. I claim that H contains a heavy Hamiltonian cycle if and only if G contains a Hamiltonian
path.

3

=⇒ First, suppose G has a Hamiltonian path from vertex u to vertex v. By adding the edges vs, st,
and tu to this path, we obtain a Hamiltonian cycle in H. Moreover, this Hamiltonian cycle is
heavy, because it contains the edge st.

⇐= On the other hand, suppose H has a heavy Hamiltonian cycle. This cycle must contain the edge
st, and therefore must visit all the other vertices in H contiguously. Thus, deleting vertices s and
t and their incident edges from the cycle leaves a Hamiltonian path in G.

Given G, we can easily construct H in polynomial time by brute force.

Solution:
[smartass] I will describe a polynomial-time a reduction from the standard Hamiltonian cycle problem.
Let G be an arbitrary graph (without edge weights). Let H be the edge-weighted graph obtained from
G by assigning each edge weight 0. I claim that H contains a heavy Hamiltonian cycle if and only if G
contains a Hamiltonian path.

=⇒ Suppose G has a Hamiltonian cycle C. The total weight of C is at least half the total weight of
all edges in H, because 0 ≥ 0/2. So C is a heavy Hamiltonian cycle in H.

⇐= Suppose H has a heavy Hamiltonian cycle C. By definition, C is also a Hamiltonian cycle in G.

Given G, we can easily construct H in polynomial time by brute force.

4

