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1 There are n galaxies connected by m intergalactic teleport-ways. Each teleport-way joins two galaxies and
can be traversed in both directions. However, the company that runs the teleport-ways has established
an extremely lucrative cost structure: Anyone can teleport further from their home galaxy at no cost
whatsoever, but teleporting toward their home galaxy is prohibitively expensive.

Judy has decided to take a sabbatical tour of the universe by visiting as many galaxies as possible, starting
at her home galaxy. To save on travel expenses, she wants to teleport away from her home galaxy at every
step, except for the very last teleport home.

Describe and analyze an algorithm to compute the maximum number of galaxies that Judy can visit. Your
input consists of an undirected graph G with n vertices and m edges describing the teleport-way network,
an integer 1 ≤ s ≤ n identifying Judy’s home galaxy, and an array D[1 . . n] containing the distances of
each galaxy from s.

Solution:
We reduce this problem to finding the length of the longest path in a dag G = (V,E) as follows:

• V is the set of n galaxies, plus an artificial target node t. Let s denote Judy’s home galaxy.

• E contains a directed edge u→ v if either of the following conditions is satisfied

– There is a teleport-way between galaxy u and galaxy v, and v is farther from s than u.
– v = t and there is a teleport-way between galaxy u and s.

• We need to compute the length of the longest path in G from s to t.

• We can compute this length using dynamic programming as described in Tuesday’s lecture (and
in the lecture notes).

• The algorithm runs in O(V + E) = O(n + m) time.

You probably heard of the phrase “six degrees of separation” and the “small world” phenomenon; see https:
//en.wikipedia.org/wiki/Six_degrees_of_separation. The idea is that in many interesting networks people
or objects are within a small distance of each other. At the same time we believe in “locality” in that each
person may only a small number of people compared to the total population. The next two problems explore
the tradeoffs between diameter and degree in a graph to explore this in a more quantitative fashion.

2 Suppose G is a graph with maximum degree d. The diameter of the graph is maxu,v dist(u, v). Prove that
the diameter of the graph is Ω(logd n) where n is the number of nodes. It is easier to consider d = 5 or
some other small constant for simplicity. Hint: Consider the BFS layers starting at any vertex v.

The point of the problem is to show that if all degrees are small then the diameter must grow with the
number of nodes.

Solution:
Suppose the maximum degree is d. Let the diameter be D = d(s, t) for some pair of nodes s and t.
Then the number of nodes that can be in layer 1 of a BFS search starting at s (distance 1 away from
s) is, by definition of degree, at most d. The number of nodes that can then be at layer 2 is at most
d2, since each node at layer 1 is connected to at most d other nodes. In general, the number of nodes
at layer i is at most di. Since the diameter is D, the total number of nodes summing across all of the
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D layers in a BFS starting from s is at most
∑D

i=0 d
i ≤ dD+1. But if there are n nodes, this means

n ≤ dD+1, and taking logs base d, we have logd n ≤ D + 1, so diameter D = Ω(logd n) as was to be
shown.

3 Suppose the diameter of an undirected simple graph is d. Prove that there is a node with degree at most
3n/d. Hint: Consider the BFS layers for the pair defining the diameter. It is easier to prove a bound such
as 9n/d.

This problem is to show you that if the diameter is small then there must be a large degree node.

Solution:
Note that the graph is connected if it has finite diameter. If the diameter is d then there is a pair of
nodes s, t such that d(s, t) = d. Consider the BFS layers starting from s. Hence we have L0 = {s},
L1, L2, . . . , Ld where t ∈ Ld. Consider any node u in a layer Li where 1 ≤ i ≤ d−1. From the properties
of the BFS layers u can be connected only to nodes in Li−1, Li, Li+1. Thus deg(u) ≤ |Li−1|+|Li|+|Li+1|.
For i = 0 we can say that deg(s) ≤ |L1|. For i = d we can say that deg(t) ≤ |Ld−1| + |Ld|. Suppose
the claim is false and hence deg(v) > 3n/d for every v ∈ V . For 1 ≤ i ≤ d − 1 pick an arbitrary node
ui from Li (each layer is non-empty so we can do this). We have deg(ui) ≤ |Li−1| + |Li| + |Li+1| and
since we assumed that the claim is false, 3n/d < |Li−1|+ |Li|+ |Li+1| for each 1 ≤ i ≤ d− 1. For i = 0
and i = d we have |L1| > 3n/d and |Ld−1|+ |Ld| > 3n/d. Summing these inequalities from i = 0 to d
we obtain

|L0|+ 3(|L1|+ |L2|+ . . . + |Ld−1|) + 2|Ld| > (d + 1) · 3n/d > 3n.

The above implies that
|L0|+ |L1|+ . . . + |Ld| > n

which is a contradiction since the every node is in exactly one of the layers. Thus there must be a node
with degree at most 3n/d.

A more elegant solution.

Solution:
Let P = v0, v1, . . . , vd be the diameter-defining path of the graph. Here, unless |i− j| = 1, there cannot
be an edge joining vi and vj , for otherwise the distance between v0 and vd would be smaller than d. In
addition, any vertex u not in P can have at most three neighbors in P for the same reason.

Therefore, the sum of degrees of the vertices in P is

d∑
i=0

deg(vi) ≤ 2d + 3(n− d− 1) = 3n− d− 3

By the Pigeonhole Principle, there is a node in P with degree at most
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d + 1

d∑
i=0

deg(vi) ≤
3n− d− 3

d + 1
≤ 3n

d
.
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