
Discussion 07a: Wednesday, March 4, 2020 Version: 1.0 CS/ECE 374 B, Spring 2020

Describe recursive backtracking algorithms for the following problems. Don’t worry about running times.

1 Given an array A[1 .. n] of integers, compute the length of a longest increasing subsequence .

Solution:
[#1 of ∞] Add a sentinel value A[0] = −∞. Let LIS(i, j) denote the length of the longest increasing
subsequence of A[j . . n] where every element is larger than A[i]. This function obeys the following
recurrence:

LIS(i, j) =


0 if j > n

LIS(i, j + 1) if j ≤ n and A[i] ≥ A[j]

max {LIS(i, j + 1), 1 + LIS(j, j + 1)} otherwise

We need to compute LIS(0, 1).

Solution:
[#2 of∞] Add a sentinel value A[n+1] = −∞. Let LIS(i, j) denote the length of the longest increasing
subsequence of A[1 . . j] where every element is smaller than A[j]. This function obeys the following
recurrence:

LIS(i, j) =


0 if i < 1

LIS(i− 1, j) if i ≥ 1 and A[i] ≥ A[j]

max {LIS(i− 1, j), 1 + LIS(i− 1, i)} otherwise

We need to compute LIS(n, n+ 1).

Solution:
[#3 of ∞] Let LIS(i) denote the length of the longest increasing subsequence of A[i . . n] that begins
with A[i]. This function obeys the following recurrence:

LIS(i) =

{
1 if A[j] ≤ A[i] for all j > i

1 + max {LIS(j)} j > i and A[j] > A[i] otherwise

(The first case is actually redundant if we define max∅ = 0.) We need to compute maxi LIS(i).

Solution:
[#4 of ∞] Add a sentinel value A[0] = −∞. Let LIS(i) denote the length of the longest increasing
subsequence of A[i . . n] that begins with A[i]. This function obeys the following recurrence:

LIS(i) =

{
1 if A[j] ≤ A[i] for all j > i

1 + max {LIS(j)} j > i and A[j] > A[i] otherwise

(The first case is actually redundant if we define max∅ = 0.) We need to compute LIS(0)− 1; the −1
removes the sentinel −∞ from the start of the subsequence.

1



Solution:
[#5 of∞] Add sentinel values A[0] = −∞ and A[n+1] =∞. Let LIS(j) denote the length of the longest
increasing subsequence of A[1 . . j] that ends with A[j]. This function obeys the following recurrence:

LIS(j) =

{
1 if j = 0

1 +max {LIS(i)} i < j and A[i] < A[j] otherwise

We need to compute LIS(n+ 1)− 2; the −2 removes the sentinels −∞ and ∞ from the subsequence.

2 Given an array A[1 .. n] of integers, compute the length of a longest decreasing subsequence .

Solution:
[one of many] Add a sentinel value A[0] =∞. Let LDS(i, j) denote the length of the longest decreasing
subsequence of A[j . . n] where every element is smaller than A[i]. This function obeys the following
recurrence:

LDS(i, j) =


0 if j > n

LDS(i, j + 1) if j ≤ n and A[i] ≤ A[j]

max {LDS(i, j + 1), 1 + LIS(j, j + 1)} otherwise

We need to compute LDS(0, 1).

Solution:
[clever] Multiply every element of A by −1, and then compute the length of the longest increasing
subsequence using the algorithm from problem 1.

3 Given an array A[1 .. n] of integers, compute the length of a longest alternating subsequence .

Solution:
[one of many] We define two functions:

• Let LAS+(i, j) denote the length of the longest alternating subsequence of A[j . . n] whose first
element (if any) is larger than A[i] and whose second element (if any) is smaller than its first.

• Let LAS−(i, j) denote the length of the longest alternating subsequence of A[j . . n] whose first
element (if any) is smaller than A[i] and whose second element (if any) is larger than its first.

These two functions satisfy the following mutual recurrences:

LAS+(i, j) =


0 if j > n

LAS+(i, j + 1) if j ≤ n and A[j] ≤ A[i]

max
{
LAS+(i, j + 1), 1 + LAS−(j, j + 1)

}
otherwise

LAS−(i, j) =


0 if j > n

LAS−(i, j + 1) if j ≤ n and A[j] ≥ A[i]

max
{
LAS−(i, j + 1), 1 + LAS+(j, j + 1)

}
otherwise

To simplify computation, we consider two different sentinel values A[0]. First we set A[0] = −∞ and let
`+ = LAS+(0, 1). Then we set A[0] = +∞ and let `− = LAS−(0, 1). Finally, the length of the longest
alternating subsequence of A is max {`+, `−}.

2



Solution:
[one of many] We define two functions:

• Let LAS+(i) denote the length of the longest alternating subsequence of A[i . . n] that starts with
A[i] and whose second element (if any) is larger than A[i].

• Let LAS−(i) denote the length of the longest alternating subsequence of A[i . . n] that starts with
A[i] and whose second element (if any) is smaller than A[i].

These two functions satisfy the following mutual recurrences:

LAS+(i) =

{
1 if A[j] ≤ A[i] for all j > i

1 + max
{
LAS−(j)

}
j > i and A[j] > A[i] otherwise

LAS−(i) =

{
1 if A[j] ≥ A[i] for all j > i

1 + max
{
LAS+(j)

}
j > i and A[j] < A[i] otherwise

We need to compute maximax
{
LAS+(i),LAS−(i)

}
.

To think about later:

1 Given an array A[1 .. n] of integers, compute the length of a longest convex subsequence of A.

Solution:
Let LCS(i, j) denote the length of the longest convex subsequence of A[i . . n] whose first two elements
are A[i] and A[j]. This function obeys the following recurrence:

LCS(i, j) = 1 +max {LCS(j, k)} j < k ≤ n and A[i] +A[k] > 2A[j]

Here we define max∅ = 0; this gives us a working base case. The length of the longest convex
subsequence is max1≤i<j≤n LCS(i, j).

Solution:
[with sentinels] Assume without loss of generality that A[i] ≥ 0 for all i. (Otherwise, we can add

∣∣m∣∣
to each A[i], where m is the smallest element of A[1 . . n].) Add two sentinel values A[0] = 2M +1 and
A[−1] = 4M + 3, where M is the largest element of A[1 . . n].

Let LCS(i, j) denote the length of the longest convex subsequence of A[i . . n] whose first two elements
are A[i] and A[j]. This function obeys the following recurrence:

LCS(i, j) = 1 +max {LCS(j, k)} j < k ≤ n and A[i] +A[k] > 2A[j]

Here we define max∅ = 0; this gives us a working base case.

Finally, we claim that the length of the longest convex subsequence of A[1 . . n] is LCS(−1, 0)− 2.

Proof: First, consider any convex subsequence S of A[1 . . n], and suppose its first element is A[i].
Then we have A[−1] − 2A[0] + A[i] = 4M + 3 − 2(2M + 1) + A[i] = A[i] + 1 > 0, which implies that
A[−1] · A[0] · S is a convex subsequence of A[−1 . . n]. So the longest convex subsequence of A[1 . . n]
has length at most LCS(−1, 0)− 2.

On the other hand, removing A[−1] and A[0] from any convex subsequence of A[−1 . . n] laves a convex
subsequence of A[1 . . n]. So the longest subsequence of A[1 . . n] has length at least LCS(−1, 0)− 2.

3



2 Given an array A[1 .. n], compute the length of a longest palindrome subsequence of A.

Solution:
[naive] Let LPS(i, j) denote the length of the longest palindrome subsequence of A[i . . j]. This function
obeys the following recurrence:

LPS(i, j) =



0 if i > j

1 if i = j

max

{
LPS(i+ 1, j)

LPS(i, j − 1)

}
if i < j and A[i] 6= A[j]

max


2 + LPS(i+ 1, j − 1)

LPS(i+ 1, j)

LPS(i, j − 1)

 otherwise

We need to compute LPS(1, n).

Solution:
[with greedy optimization] Let LPS(i, j) denote the length of the longest palindrome subsequence of
A[i . . j]. Before stating a recurrence for this function, we make the following useful observation.1

Claim 0.1. If i < j and A[i] = A[j], then LPS(i, j) = 2 + LPS(i+ 1, j − 1).

Proof: Suppose i < j and A[i] = A[j]. Fix an arbitrary longest palindrome subsequence S of A[i . . j].
There are four cases to consider.

• If S uses neither A[i] nor A[j], then A[i] • S •A[j] is a palindrome subsequence of A[i . . j] that is
longer than S, which is impossible.

• Suppose S uses A[i] but not A[j]. Let A[k] be the last element of S. If k = i, then A[i] • A[j]
is a palindrome subsequence of A[i . . j] that is longer than S, which is impossible. Otherwise,
replacing A[k] with A[j] gives us a palindrome subsequence of A[i . . j] with the same length as S
that uses both A[i] and A[j].

• Suppose S uses A[j] but not A[i]. Let A[h] be the first element of S. If h = j, then A[i] • A[j]
is a palindrome subsequence of A[i . . j] that is longer than S, which is impossible. Otherwise,
replacing A[h] with A[i] gives us a palindrome subsequence of A[i . . j] with the same length as S
that uses both A[i] and A[j].

• Finally, S might include both A[i] and A[j].

In all cases, we find either a contradiction or a longest palindrome subsequence of A[i . . j] that uses
both A[i] and A[j].

Claim 1 implies that the function LPS satisfies the following recurrence:

LPS(i, j) =


0 if i > j

1 if i = j

max
{
LPS(i+ 1, j), LPS(i, j − 1)

}
if i < j and A[i] 6= A[j]

2 + LPS(i+ 1, j − 1) otherwise

We need to compute LPS(1, n).

4


