In lecture, Andrew described an algorithm of Karatsuba that multiplies two \(n \)-digit integers using \(O(n^{\log_2 3}) \) single-digit additions, subtractions, and multiplications. In this lab we’ll look at some extensions and applications of this algorithm.

1. Describe an algorithm to compute the product of an \(n \)-digit number and an \(m \)-digit number, where \(m < n \), in \(O(m^{\log_2 3 - 1} n) \) time.

Solution:
Split the larger number into \(\lceil n/m \rceil \) chunks, each with \(m \) digits. Multiply the smaller number by each chunk in \(O(m^{\log_2 3}) \) time using Karatsuba’s algorithm, and then add the resulting partial products with appropriate shifts.

```plaintext
SkewMultiply(\(x[0..m-1], y[0..n-1]\)):
    prod ← 0
    offset ← 0
    for i ← 0 to \( \lceil n/m \rceil - 1 \)
        chunk ← \(y[i \cdot m .. (i + 1) \cdot m - 1]\)
        prod ← prod + \(\text{Multiply}(x, \text{chunk}) \cdot 10^{i \cdot m}\)
    return prod
```

Each call to \(\text{Multiply}\) requires \(O(m^{\log_2 3}) \) time, and all other work within a single iteration of the main loop requires \(O(m) \) time. Thus, the overall running time of the algorithm is \(O(1) + \lceil n/m \rceil O(m^{\log_2 3}) = O(m^{\log_2 3 - 1} n) \) as required.

This is the standard method for multiplying a large integer by a single “digit” integer \(\text{written in base } 10^m\), but with each single-“digit” multiplication implemented using Karatsuba’s algorithm.

2. Describe an algorithm to compute the decimal representation of \(2^n \) in \(O(n^{\log_2 3}) \) time. (The standard algorithm that computes one digit at a time requires \(\Theta(n^2)\) time.)

Solution:
We compute \(2^n \) via repeated squaring, implementing the following recurrence:

\[
2^n = \begin{cases}
1 & \text{if } n = 0 \\
(2^{n/2})^2 & \text{if } n > 0 \text{ is even} \\
2 \cdot (2^{n/2})^2 & \text{if } n \text{ is odd}
\end{cases}
\]

We use Karatsuba’s algorithm to implement decimal multiplication for each square.

```plaintext
TwoToThe(n):
if n = 0
    return 1
m ← \lceil n/2 \rceil
z ← TwoToThe(m) // recurse!
z ← \text{Multiply}(z, z) // Karatsuba
if n is odd
    z ← \text{Add}(z, z)
return z
```
The running time of this algorithm satisfies the recurrence \(T(n) = T(\lfloor n/2 \rfloor) + O(n^{\lg 3}) \). We can safely ignore the floor in the recursive argument. The recursion tree for this algorithm is just a path; the work done at recursion depth \(i \) is \(O((n/2)^{\lg 3}) = O(n^{\lg 3}/3^i) \). Thus, the levels sums form a descending geometric series, which is dominated by the work at level 0, so the total running time is at most \(O(n^{\lg 3}) \).

3 Describe a divide-and-conquer algorithm to compute the decimal representation of an arbitrary \(n \)-bit binary number in \(O(n^{\lg 3}) \) time. (Hint: Let \(x = a \cdot 2^{n/2} + b \). Watch out for an extra log factor in the running time.)

Solution:

Following the hint, we break the input \(x \) into two smaller numbers \(x = a \cdot 2^{n/2} + b \); recursively convert \(a \) and \(b \) into decimal; convert \(2^{n/2} \) into decimal using the solution to problem 2; multiply \(a \) and \(2^{n/2} \) using Karatsuba’s algorithm; and finally add the product to \(b \) to get the final result.

\[
\text{Decimal}(x[0 \ldots n-1]):
\begin{align*}
\text{if } n < 100 & \text{ use brute force} \\
 m & \left\lceil n/2 \right\rceil \\
 a & x[m \ldots n-1] \\
 b & x[0 \ldots m-1] \\
\text{return Add(Multiply(Decimal(a), TwoToThe(m)), Decimal(b))}
\end{align*}
\]

The running time of this algorithm satisfies the recurrence \(T(n) = 2T(n/2) + O(n^{\lg 3}) \); the \(O(n^{\lg 3}) \) term includes the running times of both \text{Multiply} and \text{TwoToThe} (as well as the final linear-time addition).

The recursion tree for this algorithm is a binary tree, with \(2^i \) nodes at recursion depth \(i \). Each recursive call at depth \(i \) converts an \(n/2^i \)-bit binary number to decimal; the non-recursive work at the corresponding node of the recursion tree is \(O((n/2^i)^{\lg 3}) = O(n^{\lg 3}/3^i) \). Thus, the total work at depth \(i \) is \(2^i \cdot O(n^{\lg 3}/3^i) = O(n^{\lg 3}/(3/2)^i) \). The level sums define a descending geometric series, which is dominated by its largest term \(O(n^{\lg 3}) \).

Notice that if we had converted \(2^{n/2} \) to decimal \emph{recursively} instead of calling \text{TwoToThe}, the recurrence would have been \(T(n) = 3T(n/2) + O(n^{\lg 3}) \). Every level of this recursion tree has the same sum, so the overall running time would be \(O(n^{\lg 3} \log n) \).

Think about later:

4 Suppose we can multiply two \(n \)-digit numbers in \(O(M(n)) \) time. Describe an algorithm to compute the decimal representation of an arbitrary \(n \)-bit binary number in \(O(M(n) \log n) \) time.

Solution:

We modify the solutions of problems 2 and 3 to use the faster multiplication algorithm instead of Karatsuba’s algorithm. Let \(T_2(n) \) and \(T_3(n) \) denote the running times of \text{TwoToThe} and \text{Decimal}, respectively. We need to solve the recurrences

\[
T_2(n) = T_2(n/2) + O(M(n)) \quad \text{and} \quad T_3(n) = 2T_3(n/2) + T_2(n) + O(M(n)).
\]

But how can we do that when we don’t know \(M(n) \)?
For the moment, suppose $M(n) = O(n^c)$ for some constant $c > 0$. Since any algorithm to multiply two n-digit numbers must read all n digits, we have $M(n) = \Omega(n)$, and therefore $c \geq 1$. On the other hand, the grade-school lattice algorithm implies $M(n) = O(n^2)$, so we can safely assume $c \leq 2$. With this assumption, the recursion tree method implies

$$T_2(n) = T_2(n/2) + O(n^c) \quad \Rightarrow \quad T_2(n) = O(n^c)$$

$$T_3(n) = 2T_3(n/2) + O(n^c) \quad \Rightarrow \quad T_3(n) = \begin{cases} O(n \log n) & \text{if } c = 1, \\ O(n^c) & \text{if } c > 1. \end{cases}$$

So in this case, we have $T_3(n) = O(M(n) \log n)$ as required.

In reality, $M(n)$ may not be a simple polynomial, but we can effectively ignore any sub-polynomial noise using the following trick. Suppose we can write $M(n) = n^c \cdot \mu(n)$ for some constant c and some arbitrary non-decreasing function $\mu(n)$.1

To solve the recurrence $T_2(n) = T_2(n/2) + O(M(n))$, we define a new function $\tilde{T}_2(n) = T_2(n)/\mu(n)$. Then we have

$$\tilde{T}_2(n) = \frac{T_2(n/2)}{\mu(n)} + \frac{O(M(n))}{\mu(n)} \leq \frac{T_2(n/2)}{\mu(n/2)} + \frac{O(M(n))}{\mu(n)} = \tilde{T}_2(n/2) + O(n^c).$$

Here we used the inequality $\mu(n) \geq \mu(n/2)$; this the only fact about μ that we actually need. The recursion tree method implies $\tilde{T}_2(n) \leq O(n^c)$, and therefore $T_2(n) \leq O(n^c) \cdot \mu(n) = O(M(n))$.

Similarly, to solve the recurrence $T_3(n) = 2T_3(n/2) + O(M(n))$, we define $\tilde{T}_3(n) = T_3(n)/\mu(n)$, which gives us the recurrence $\tilde{T}_3(n) \leq 2\tilde{T}_3(n/2) + O(n^c)$. The recursion tree method implies

$$\tilde{T}_3(n) \leq \begin{cases} O(n \log n) & \text{if } c = 1, \\ O(n^c) & \text{if } c > 1. \end{cases}$$

In both cases, we have $\tilde{T}_3(n) = O(n^c \log n)$, which implies that $T_3(n) = O(M(n) \log n)$.