
HW 11: Solved Problem Instructors: Hassanieh, Miller

CS/ECE 374 B: Algorithms & Models of Computation, Spring 2020 Version: 1.0

1 Consider the following solitaire game. The puzzle consists of an n×m grid of squares, where each
square may be empty, occupied by a red stone, or occupied by a blue stone. The goal of the puzzle
is to remove some of the given stones so that the remaining stones satisfy two conditions:
(1) every row contains at least one stone, and
(2) no column contains stones of both colors.
For some initial configurations of stones, reaching this goal is impossible.

CS/ECE ���A Homework � (due November ��) Fall ����

Solved Problem

�. Consider the following solitaire game. The puzzle consists of an n⇥m grid of squares,
where each square may be empty, occupied by a red stone, or occupied by a blue stone.
The goal of the puzzle is to remove some of the given stones so that the remaining stones
satisfy two conditions:

(�) Every row contains at least one stone.

(�) No column contains stones of both colors.

For some initial configurations of stones, reaching this goal is impossible; see the example
below.

Prove that it is NP-hard to determine, given an initial configuration of red and blue
stones, whether this puzzle can be solved.

A solvable puzzle and one of its many solutions. An unsolvable puzzle.

Solution: We show that this puzzle is NP-hard by describing a reduction from �S��.

Let � be a �CNF boolean formula with m variables and n clauses. We transform
this formula into a puzzle configuration in polynomial time as follows. The size of the
board is n⇥m. The stones are placed as follows, for all indices i and j:

• If the variable x j appears in the ith clause of �, we place a blue stone at (i, j).

• If the negated variable x j appears in the ith clause of �, we place a red stone at
(i, j).

• Otherwise, we leave cell (i, j) blank.

We claim that this puzzle has a solution if and only if � is satisfiable. This claim
immediately implies that solving the puzzle is NP-hard. We prove our claim as follows:

=) First, suppose � is satisfiable; consider an arbitrary satisfying assignment. For
each index j, remove stones from column j according to the value assigned to x j:

– If x j = T���, remove all red stones from column j.
– If x j = F����, remove all blue stones from column j.

In other words, remove precisely the stones that correspond to F���� literals.
Because every variable appears in at least one clause, each column now contains
stones of only one color (if any). On the other hand, each clause of � must
contain at least one T��� literal, and thus each row still contains at least one
stone. We conclude that the puzzle is satisfiable.

�

Prove that it is NP-hard to determine, given an initial configuration of red and blue stones, whether
this puzzle can be solved.

Solution:
We show that this puzzle is NP-hard by describing a reduction from 3SAT.

Let Φ be a 3CNF boolean formula with m variables and n clauses. We transform this formula
into a puzzle configuration in polynomial time as follows. The size of the board is n×m. The
stones are placed as follows, for all indices i and j:

• If the variable xj appears in the ith clause of Φ, we place a blue stone at (i, j).

• If the negated variable xj appears in the ith clause of Φ, we place a red stone at (i, j).

• Otherwise, we leave cell (i, j) blank.

We claim that this puzzle has a solution if and only if Φ is satisfiable. This claim
immediately implies that solving the puzzle is NP-hard. We prove our claim as follows:

=⇒ First, suppose Φ is satisfiable; consider an arbitrary satisfying assignment. For each index j,
remove stones from column j according to the value assigned to xj:

– If xj = True, remove all red stones from column j.
– If xj = False, remove all blue stones from column j.

In other words, remove precisely the stones that correspond to False literals. Because
every variable appears in at least one clause, each column now contains stones of only
one color (if any). On the other hand, each clause of Φ must contain at least one True
literal, and thus each row still contains at least one stone. We conclude that the puzzle is
satisfiable.

1

⇐= On the other hand, suppose the puzzle is solvable; consider an arbitrary solution. For each
index j, assign a value to xj depending on the colors of stones left in column j:

– If column j contains blue stones, set xj = True.
– If column j contains red stones, set xj = False.
– If column j is empty, set xj arbitrarily.

In other words, assign values to the variables so that the literals corresponding to the
remaining stones are all True. Each row still has at least one stone, so each clause of Φ
contains at least one True literal, so this assignment makes Φ = True. We conclude that
Φ is satisfiable.

This reduction clearly requires only polynomial time.

Rubric:[for all polynomial-time reductions] 10 points =

+ 3 points for the reduction itself

– For an NP-hardness proof, the reduction must be from a known NP-hard problem. You
can use any of the NP-hard problems listed in the lecture notes (except the one you are
trying to prove NP-hard, of course).

+ 3 points for the “if” proof of correctness

+ 3 points for the “only if” proof of correctness

+ 1 point for writing “polynomial time”

• An incorrect polynomial-time reduction that still satisfies half of the correctness proof is
worth at most 4/10.

• A reduction in the wrong direction is worth 0/10.

2 A double-Hamiltonian tour in an undirected graph G is a closed walk that visits every vertex
in G exactly twice. Prove that it is NP-hard to decide whether a given graph G has a double-
Hamiltonian tour.

b
d

c

f
g

a

e

This graph contains the double-Hamiltonian tour a�b�d�g�e�b�d�c�f�a�c�f�g�e�a.

Solution:
We prove the problem is NP-hard with a reduction from the standard Hamiltonian cycle prob-
lem. Let G be an arbitrary undirected graph. We construct a new graph H by attaching a
small gadget to every vertex of G. Specifically, for each vertex v, we add two vertices v] and v[,
along with three edges vv[, vv], and v[v].

2

A vertex in G, and the corresponding vertex gadget in H.

I claim that G has a Hamiltonian cycle if and only if H has a double-Hamiltonian tour.

=⇒ Suppose G has a Hamiltonian cycle v1 → v2 → · · · → vn → v1. We can construct a
double-Hamiltonian tour of H by replacing each vertex vi with the following walk:

· · · → vi → v[i → v]i → v[i → v]i → vi → · · ·

⇐= Conversely, suppose H has a double-Hamiltonian tour D. Consider any vertex v in the
original graph G; the tour D must visit v exactly twice. Those two visits split D into two
closed walks, each of which visits v exactly once. Any walk from v[or v] to any other vertex
in H must pass through v. Thus, one of the two closed walks visits only the vertices v, v[,
and v]. Thus, if we simply remove the vertices in H \G from D, we obtain a closed walk
in G that visits every vertex in G once.

Given any graph G, we can clearly construct the corresponding graph H in polynomial time.

With more effort, we can construct a graph H that contains a double-Hamiltonian tour that
traverses each edge of H at most once if and only if G contains a Hamiltonian cycle. For
each vertex v in G we attach a more complex gadget containing five vertices and eleven edges,
as shown on the next page.

A vertex in G, and the corresponding modified vertex gadget in H.

Solution:
Bad and incorrect solution!!!

We attempt to prove the problem is NP-hard with a reduction from the Hamiltonian cycle
problem. Let G be an arbitrary undirected graph. We construct a new graph H by attaching
a self-loop every vertex of G. Given any graph G, we can clearly construct the corresponding
graph H in polynomial time.

3

An incorrect vertex gadget.

Suppose G has a Hamiltonian cycle v1 → v2 → · · · → vn → v1. We can construct a double-
Hamiltonian tour of H by alternating between edges of the Hamiltonian cycle and self-loops:

v1�v1�v2�v2�v3� · · ·�vn�vn�v1.

On the other hand, if H has a double-Hamiltonian tour, we cannot conclude that G has a
Hamiltonian cycle, because we cannot guarantee that a double-Hamiltonian tour in H uses any
self-loops. The graph G shown below is a counterexample; it has a double-Hamiltonian tour
(even before adding self-loops) but no Hamiltonian cycle.

This graph has a double-Hamiltonian tour.

Rubric:[for all polynomial-time reductions] 10 points =

+ 3 points for the reduction itself

– For an NP-hardness proof, the reduction must be from a known NP-hard problem. You
can use any of the NP-hard problems listed in the lecture notes (except the one you are
trying to prove NP-hard, of course).

+ 3 points for the “if” proof of correctness

+ 3 points for the “only if” proof of correctness

+ 1 point for writing “polynomial time”

• An incorrect polynomial-time reduction that still satisfies half of the correctness proof is
worth at most 4/10.

• A reduction in the wrong direction is worth 0/10.

4

