
HW 10: Solved Problem Instructors: Hassanieh, Miller

CS/ECE 374 B: Algorithms & Models of Computation, Spring 2020 Version: 1.0

1 We have seen some variants of the maximum weight subset problem under constraints in the lecture
slides on greedy algorithms. Consider the following problem which generalizes the two variants we
saw. The input is a rooted tree T = (V,E). Each edge e ∈ E has a non-negative integer capacity
u(e). For a given e ∈ E let Te be the sub-tree of T under the edge e. The items of interest are the
leaves L of T . Each leaf v has a non-negative weight w(v). The goal is to find a maximum weight
subset S ⊆ L such that the following holds: for each edge e the number of leaves in S that are in
the sub-tree Te is at most u(e); formally |S ∩ L(Te)| ≤ u(e) for each e ∈ E where L(Te) is the set
of leaves of Te. Describe a greedy algorithm for this problem and prove its correctness.

Solution:
We are given a rooted tree T = (V,E). Assume that the vertices are labeled from 1, . . . , n and
the edges are labeled 1, . . . , n− 1. In addition, assume that the edge capacities are given in the
array u[1..n− 1].

A leaf is feasible if it can be added to the subset S without violating the capacity constraints.
First, the greedy algorithm preprocesses the tree to obtain the leaves and sorts them in decreas-
ing order of weight. Then, the algorithm considers the leaves in that order. For each leaf, it
is added to S if it still maintains the feasibility, otherwise the leaf is discarded. It ultimately
returns a set S of chosen leaves.

Greedy Algorithm:

• Build a set of the leaves {v1, . . . , vk} by performing a whatever-first search to find vertices
in the tree that do not have children.

• Sort the leaves in decreasing order of weight so that w(v1) ≥ · · · ≥ w(vk).
• S ← ∅.
• For i← 1 to k:

– Find the path from vi to the root either by using whatever-first search or by repeatedly
moving towards the parent until the root is found.

– If every edge e in the path has positive capacity u[e], then again traverse the path
from v to the root, setting u[e]← u[e]− 1 for each edge e, and insert v into S.

• Return S

Here, n = |V | and k is the number of leaves of T . Thus, k ≤ n. Building the set of leaves can be
done in O(n) time, and sorting them can be done in O(n log n) time. The rest of the algorithm
can be done in O(n2) time because there are O(n) loop iterations to consider all the leaves,
and each loop iteration does O(n) work to traverse the tree and update the edge capacities.
Therefore, the total running time of this algorithm is O(n2).

If desired, the actual total weight of the maximum weight leaf subset may be calculated by
summing w(v) for all v in S in O(n) time.

Proof (Exchange argument and induction): We begin with the exchange argument.

1

Lemma 10.1. There exists an optimum solution that contains the first leaf Greedy would pick,
g1.

Proof: Suppose OPT is any optimum solution for T . If OPT contains g1, then the proof of
the lemma is complete. Suppose OPT does not contain g1. Note that g1 must be feasible if no
leaves have been chosen yet, for otherwise Greedy would not choose g1.

Suppose that g1 is still feasible after all vertices in OPT have been chosen. Then OPT ∪ {g1}
would also satisfy all the constraints, and its weight is no less than that of OPT .

Suppose that g1 is no longer feasible after all vertices in OPT have been chosen, and let e be
the lowest edge that prevents g1 from being a feasible edge. Because g1 was feasible before any
leaf is chosen, u(e) must be positive, and let v be one of the u(e) chosen vertices in OPT under
Te. Note that OPT ′ = (OPT \{v})∪{g1} satisfies all the edge constraints, because the number
of chosen vertices under Te remains the same, and e is the lowest problematic edge. Because g1
is the first leaf greedy would pick, w(g1) ≥ w(v). Therefore, the weight of OPT ′ is no less than
that of OPT .

In either case, there exists an optimum solution OPT ′ that contains g1.

Lemma 10.2. Greedy returns an optimum solution.

Proof: For simplicity, we’ll say that G(T) means the greedy solution. Now, we apply induction
on the number of leaves of T .

Base case: G(T) returns the the empty set if T has no more leaves feasible to pick.

Inductive hypothesis : Suppose for T with at least one leaf that is not the root node and fewer
than k leaves total, G(T) is an optimum solution.

Inductive step: Now let T be an arbitrary tree with k leaves. T ′ ← T \ {g1}, where g1 is the
first leaf Greedy would pick, and where T ′ has had its edge capacites decreased correctly along
the path to the root. By the inductive hypothesis, assume G(T ′) is an optimum solution for
T ′. By the lemma, suppose there is an optimum solution OPT which also contained g1. Let
OPT ′ ← OPT \{g1}. Now OPT ′ is a solution for T ′ because no edge capacity has been violated
(otherwise, OPT could not have picked g1 before). So G(T ′) is an optimum solution for T ′, and
OPT ′ is a solution for T ′.

Let |S| denote the total weight of S. Then |G(T ′)| ≥ |OPT ′|. Add the weight of g1 to both
sides. |G(T ′)| + |g1| ≥ |OPT ′| + |g1|. This is the same as saying |G(T)| ≥ |OPT | since g1
would have been the first choice of Greedy made from the original tree and OPT contained the
same leaf as well. Therefore G(T) is at least as good as optimum solution OPT , so G(T) is an
optimum solution.

Rubric: Out of 10 points, we would allocate:

• 5 points for the greedy algorithm
• 5 points for proof of correctness

Grading Notes:

• It is okay to return the maximum weight of S rather than the set S itself.
• It is okay to handle (or not handle) the case where E = ∅ in any way.

2

