
HW 10 Due on Monday, April 20, 2020 at 11pm

CS/ECE 374 B: Algorithms & Models of Computation, Spring 2020 Version: 1.1

Submission instructions as in previous homeworks.

28 (100 pts.) Changing the Weights

Let G = (V,E) be a directed graph with edge lengths that can be negative. Let `(e) denote the
length of edge e ∈ E and assume it is an integer, `(e) ∈ Z. Assume you have found shortest path
tree T rooted at a source node s that contains all the nodes in V . You also have the distance
values d(s, u) for each u ∈ V in an array (thus, you can access the distance from s to u in O(1)
time). Note that the existence of T implies that G does not have a negative length cycle.

For example, consider the graph below, T is shown using red edges and the minimum distance
d(s, u) is shown next to each node.
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28.A. (20 pts.) Let e = (p, q) be an edge of G that is not in T . Given e, show how to compute in
O(1) time the smallest integer amount by which we can decrease `(e) before T is not a valid
shortest path tree in G. Briefly justify the correctness of your solution. For example, in the
graph above it is enough to decrease (b, d) by −2 for T to become invalid.

28.B. (80 pts.) Let e = (p, q) be an edge in the tree T . Given e, show how to compute in O(m+n)
time the smallest integer amount by which we can increase `(e) such that T is no longer
a valid shortest path tree. Your algorithm should output ∞ if no amount of increase will
change the shortest path tree. Briefly justify the correctness of your solution. For example,
in the graph above it is enough to increase (d, a) by 9 for T to become invalid.

29 (100 pts.) 5G Cellular Deployments II

We have seen or will see in midterm 2 a question on 5G small cellular deployments. In that question,
our goal was to minimize the cost of the deployment without taking into account whether it ensures
coverage to all customers. In this question, we will try to ensure coverage without caring much for
the cost. (Note that you do not need to have solved the midterm to solve this question nor does
solving this question helps you on the midterm. )

Suppose there are n customers living on Green street which is a perfectly straight street. The
ith customer lives at distance xi meters from the beginning of the street (i.e., you are given n
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numbers: 0 ≤ x1 < x2 < · · · < xn). GlobalCell is planning to connect all of these customers
together small cell 5G base stations. A base station, which can be placed anywhere along Green
street, can serve all the customers in distance r from it.

The input is x1, x2, . . . , xn, r. Describe a greedy efficient algorithm, as fast as possible, that
computes the smallest number of base stations that can serve all the n customers. Namely,
every one of the n customers must be in distance ≤ r from some base station that your algorithm
decided to build.

As with all greedy algorithms, you must always prove the correctness and running time of your
algorithm.

30 (100 pts.) Minimum Spanning Tree

30.A. Consider the following “local-search” algorithm for MST. It starts with an arbitrary spanning
tree T of G. Suppose e = (u, v) is an edge in G that is not in T . It checks if it can add
e to T and remove an edge e′ on the unique path pT (u, v) from u to v in T such that tree
T ′ = T − e′ + e is cheaper than T . If T ′ is cheaper then it replaces T by T ′ and repeats.
Assuming all edge weights are integers one can see that the algorithm will terminate with a
“local-optimum” T which means it cannot be improved further by these single-edge “swaps”.
Assuming all edge weghts are distinct prove that a local-optimum tree is an MST. Note that
you are not concerned with the running time here.

30.B. We saw in lecture that Borouvka’s algorithm for MST can be implemented in O(m log n)
time where m is the number of edges and n is the number of nodes. We also saw that Prim’s
algorithm can be implemented in O(m + n log n) time. Obtain an algorithm for MST with
running time O(m log log n) by running Borouvka’s algorithm for some number of steps and
then switching to Prim’s algorithm. This algorithm is better than either of the algorithms
when m = Θ(n). Formalize the algorithm, specify the parameters, argue carefully about the
implementation and analyze the running time details. No proof of correctness required but
your algorithm should be clear.
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