Although we typically speak of “the” shortest path between two nodes, a single graph could contain several minimum-length paths with the same endpoints.

Describe and analyze an algorithm to determine the number of shortest paths from a source vertex \(s \) to a target vertex \(t \) in an arbitrary directed graph \(G \) with weighted edges. You may assume that all edge weights are positive and that all necessary arithmetic operations can be performed in \(O(1) \) time.

(Hint: Compute shortest path distances from \(s \) to every other vertex. Throw away all edges that cannot be part of a shortest path from \(s \) to another vertex. What is left?)

Solution:

We start by computing shortest-path distances \(\text{dist}(v) \) from \(s \) to \(v \), for every vertex \(v \), using Dijkstra’s algorithm. Call an edge \(u \to v \) tight if \(\text{dist}(u) + w(u \to v) = \text{dist}(v) \). Every edge in a shortest path from \(s \) to \(t \) must be tight. Conversely, every path from \(s \) to \(t \) that uses only tight edges has total length \(\text{dist}(t) \) and is therefore a shortest path!

Let \(H \) be the subgraph of all tight edges in \(G \). We can easily construct \(H \) in \(O(V + E) \) time. Because all edge weights are positive, \(H \) is a directed acyclic graph. It remains only to count the number of paths from \(s \) to \(t \) in \(H \).

For any vertex \(v \), let \(\text{PathsToT}(v) \) denote the number of paths in \(H \) from \(v \) to \(t \); we need to compute \(\text{PathsToT}(s) \). This function satisfies the following simple recurrence:

\[
\text{PathsToT}(v) = \begin{cases}
1 & \text{if } v = t \\
\sum_{w \to v} \text{PathsToT}(w) & \text{otherwise}
\end{cases}
\]

In particular, if \(v \) is a sink but \(v \neq t \) (and thus there are no paths from \(v \) to \(t \)), this recurrence correctly gives us \(\text{PathsToT}(v) = \sum \emptyset = 0 \).

We can memoize this function into the graph itself, storing each value \(\text{PathsToT}(v) \) at the corresponding vertex \(v \). Since each subproblem depends only on its successors in \(H \), we can compute \(\text{PathsToT}(v) \) for all vertices \(v \) by considering the vertices in reverse topological order,
or equivalently, by performing a depth-first search of H starting at s. The resulting algorithm runs in $O(V + E)$ time.

The overall running time of the algorithm is dominated by Dijkstra’s algorithm in the preprocessing phase, which runs in $O(E \log V)$ time.

Rubric: 10 points = 5 points for reduction to counting paths in a dag + 5 points for the path-counting algorithm (standard dynamic programming rubric)