1 A string w of parentheses (and)) and brackets 【and】 is balanced if it is generated by the following context-free grammar:

$$
S \rightarrow \varepsilon|((S))| \llbracket S \rrbracket \mid S S
$$

For example, the string $w=(\mathbb{I}(0)](())) \mathbb{I}()(0) \mathbb{I}()$ is balanced, because $w=x y$, where

$$
x=((\mathbb{C}(\mathbb{\square} \mathbb{1}(Q))) \quad \text { and } \quad y=\llbracket(Q) \rrbracket(Q) .
$$

Describe and analyze an algorithm to compute the length of a longest balanced subsequence of a given string of parentheses and brackets. Your input is an array $A[1 \ldots n]$, where $A[i] \in\{(()),, \llbracket, \rrbracket\}$ for every index i.

Solution:

Suppose $A[1 . . n]$ is the input string. For all indices i and j, we write $\boldsymbol{A}[\boldsymbol{i}] \sim \boldsymbol{A}[\boldsymbol{j}]$ to indicate that $A[i]$ and $A[j]$ are matching delimiters: Either $A[i]=(($ and $A[j]=))$ or $A[i]=\llbracket$ and $A[j]=\rrbracket$.
For all indices i and j, let $\boldsymbol{L B S} \boldsymbol{(i , j)}$ denote the length of the longest balanced subsequence of the substring $A[i . . j]$. We need to compute $\operatorname{LBS}(1, n)$. This function obeys the following recurrence:

$$
L B S(i, j)= \begin{cases}0 & \text { if } i \geq j \\
\max \left\{\begin{array}{c}
2+L B S(i+1, j-1) \\
\max _{k=1}^{j-1}(L B S(i, k)+L B S(k+1, j))
\end{array}\right\} & \text { if } A[i] \sim A[j] \\
\max _{k=1}^{j-1}(L B S(i, k)+L B S(k+1, j)) & \text { otherwise }\end{cases}
$$

We can memoize this function into a two-dimensional array $L B S[1 . . n, 1 . . n]$. Since every entry $L B S[i, j]$ depends only on entries in later rows or earlier columns (or both), we can evaluate this array row-by-row from bottom up in the outer loop, scanning each row from left to right in the inner loop. The resulting algorithm runs in $\boldsymbol{O}\left(\boldsymbol{n}^{3}\right)$ time.

```
LongestBalancedSubsequence ( \(A[1 . . n]\) ):
for \(i \leftarrow n\) down to 1
    \(L B S[i, i] \leftarrow 0\)
    for \(j \leftarrow i+1\) to \(n\)
        if \(A[i] \sim A[j]\)
            \(L B S[i, j] \leftarrow L B S[i+1, j-1]+2\)
        else
            \(L B S[i, j] \leftarrow 0\)
        for \(k \leftarrow i\) to \(j-1\)
            \(L B S[i, j] \leftarrow \max \{L B S[i, j], L B S[i, k]+L B S[k+1, j]\}\)
return \(L B S[1, n]\)
```

Rubric: 10 points, standard dynamic programming rubric
2 Oh, no! You've just been appointed as the new organizer of Giggle, Inc.'s annual mandatory holiday party! The employees at Giggle are organized into a strict hierarchy, that is, a tree with the company president at the root. The all-knowing oracles in Human Resources have assigned a real number to each employee measuring how "fun" the employee is. In order to keep things social, there is one restriction on the guest list: An employee cannot attend the party if their immediate supervisor is also present. On the other hand, the president of the company must attend the party, even though she has a negative fun rating; it's her company, after all.
Describe an algorithm that makes a guest list for the party that maximizes the sum of the "fun" ratings of the guests. The input to your algorithm is a rooted tree T describing the company hierarchy, where each node v has a field v.fun storing the "fun" rating of the corresponding employee.

Solution:

[two functions] We define two functions over the nodes of T.

- MaxFunYes (v) is the maximum total "fun" of a legal party among the descendants of v, where v is definitely invited.
- MaxFunNo(v) is the maximum total "fun" of a legal party among the descendants of v, where v is definitely not invited.

We need to compute MaxFunYes(root). These two functions obey the following mutual recurrences:

$$
\begin{aligned}
\operatorname{MaxFunYes}(v) & =v \cdot f u n+\sum_{\text {children } w \text { of } v} \operatorname{MaxFunNo}(w) \\
\operatorname{MaxFunNo}(v) & =\sum_{\text {children } w \text { of } v} \max \{\operatorname{MaxFunYes}(w), \operatorname{MaxFunNo}(w)\}
\end{aligned}
$$

(These recurrences do not require separate base cases, because $\sum \varnothing=0$.) We can memoize these functions by adding two additional fields $v . y e s$ and $v . n o$ to each node v in the tree. The values at each node depend only on the vales at its children, so we can compute all $2 n$ values using a post-order traversal of T.

```
BestParty(T):
    ComputeMAxFun(T.root)
    return T.root.yes
```

```
ComputeMaxFun(v):
    \(v\). yes \(\leftarrow v\).fun
    \(v . n o \leftarrow 0\)
    for all children \(w\) of \(v\)
        ComputemaxFun \((w)\)
        \(v . y e s \leftarrow v . y e s+w . n o\)
        \(v . n o \leftarrow v . n o+\max \{w . y e s, w . n o\}\)
```

(Yes, this is still dynamic programming; we're only traversing the tree recursively because that's the most natural way to traverse trees! ${ }^{1}$) The algorithm spends $O(1)$ time at each node, and therefore runs in $\boldsymbol{O}(\mathbf{n})$ time altogether.

Solution:

[one function] For each node v in the input tree T, let $\operatorname{MaxFun}(v)$ denote the maximum total "fun" of a legal party among the descendants of v, where v may or may not be invited.
The president of the company must be invited, so none of the president's "children" in T can be invited. Thus, the value we need to compute is

$$
\text { root.fun }+\sum_{\text {grandchildren } w \text { of root }} \operatorname{MaxFun}(w) \text {. }
$$

The function MaxFun obeys the following recurrence:

$$
\operatorname{MaxFun}(v)=\max \left\{\begin{array}{c}
v . f u n+\sum_{\text {grandchildren } x \text { of } v} \operatorname{MaxFun}(x) \\
\sum_{\operatorname{children} w \text { of } v} \operatorname{MaxFun}(w)
\end{array}\right\}
$$

(This recurrence does not require a separate base case, because $\sum \varnothing=0$.) We can memoize this function by adding an additional field v.maxFun to each node v in the tree. The value at each node depends only on the values at its children and grandchildren, so we can compute all values using a postorder traversal of T.

```
BestParty(T):
    ComputeMaxFun(T.root)
    party\leftarrowT.root.fun
    for all children w of T.root
        for all children }x\mathrm{ of }
            party \leftarrow party + x.maxFun
    return party
```

```
ComputeMaxFun(v):
    yes \(\leftarrow v\).fun
    \(n o \leftarrow 0\)
    for all children \(w\) of \(v\)
        ComputeMaxFun \((w)\)
        \(n o \leftarrow n o+w . m a x F u n\)
        for all children \(x\) of \(w\)
        yes \(\leftarrow\) yes \(+x\).maxFun
    \(v . \operatorname{maxFu} n \leftarrow \max \{y e s, n o\}\)
```

(Yes, this is still dynamic programming; we're only traversing the tree recursively because that's the most natural way to traverse trees! ${ }^{2}$)
The algorithm spends $O(1)$ time at each node (because each node has exactly one parent and one grandparent) and therefore runs in $\boldsymbol{O}(\boldsymbol{n})$ time altogether.

Rubric: 10 points: standard dynamic programming rubric. These are not the only correct solutions.

