
HW 7: Solved Problem Instructors: Hassanieh, Miller

CS/ECE 374 B: Algorithms & Models of Computation, Spring 2020 Version: 1.0

1 A string w of parentheses ((and)) and brackets [[and]] is balanced if it is generated by the following
context-free grammar:

S → ε | ((S)) | [[S]] | SS
For example, the string w = (([[(())]][[]](())))[[(())(())]](()) is balanced, because w = xy, where

x = (([[(())]] [[]] (()))) and y = [[(()) (())]] (()).

Describe and analyze an algorithm to compute the length of a longest balanced subsequence of a
given string of parentheses and brackets. Your input is an array A[1 . . n], where A[i] ∈ {((,)), [[,]]}
for every index i.

Solution:
Suppose A[1 .. n] is the input string. For all indices i and j, we write A[i] ∼ A[j] to indicate
that A[i] and A[j] are matching delimiters: Either A[i] = ((and A[j] =)) or A[i] = [[and A[j] =]].

For all indices i and j, let LBS(i, j) denote the length of the longest balanced subsequence
of the substring A[i .. j]. We need to compute LBS(1, n). This function obeys the following
recurrence:

LBS(i, j) =

0 if i ≥ j

max

{
2 + LBS(i+ 1, j − 1)

maxj−1
k=1

(
LBS(i, k) + LBS(k + 1, j)

)} if A[i] ∼ A[j]

maxj−1
k=1

(
LBS(i, k) + LBS(k + 1, j)

)
otherwise

We can memoize this function into a two-dimensional array LBS[1 .. n, 1 .. n]. Since every entry
LBS[i, j] depends only on entries in later rows or earlier columns (or both), we can evaluate this
array row-by-row from bottom up in the outer loop, scanning each row from left to right in the
inner loop. The resulting algorithm runs in O(n3) time .

LongestBalancedSubsequence(A[1 .. n]):
for i← n down to 1

LBS[i, i]← 0
for j ← i+ 1 to n

if A[i] ∼ A[j]
LBS[i, j]← LBS[i+ 1, j − 1] + 2

else
LBS[i, j]← 0

for k ← i to j − 1
LBS[i, j]← max {LBS[i, j], LBS[i, k] + LBS[k + 1, j]}

return LBS[1, n]

1

Rubric: 10 points, standard dynamic programming rubric

2 Oh, no! You’ve just been appointed as the new organizer of Giggle, Inc.’s annual mandatory
holiday party! The employees at Giggle are organized into a strict hierarchy, that is, a tree with
the company president at the root. The all-knowing oracles in Human Resources have assigned a
real number to each employee measuring how “fun” the employee is. In order to keep things social,
there is one restriction on the guest list: An employee cannot attend the party if their immediate
supervisor is also present. On the other hand, the president of the company must attend the party,
even though she has a negative fun rating; it’s her company, after all.

Describe an algorithm that makes a guest list for the party that maximizes the sum of the “fun”
ratings of the guests. The input to your algorithm is a rooted tree T describing the company hier-
archy, where each node v has a field v.fun storing the “fun” rating of the corresponding employee.

Solution:
[two functions] We define two functions over the nodes of T .

• MaxFunYes(v) is the maximum total “fun” of a legal party among the descendants of v,
where v is definitely invited.

• MaxFunNo(v) is the maximum total “fun” of a legal party among the descendants of v,
where v is definitely not invited.

We need to compute MaxFunYes(root). These two functions obey the following mutual recur-
rences:

MaxFunYes(v) = v.fun +
∑

children w of v

MaxFunNo(w)

MaxFunNo(v) =
∑

children w of v

max {MaxFunYes(w),MaxFunNo(w)}

(These recurrences do not require separate base cases, because
∑

∅ = 0.) We can memoize
these functions by adding two additional fields v.yes and v.no to each node v in the tree. The
values at each node depend only on the vales at its children, so we can compute all 2n values
using a post-order traversal of T .

BestParty(T):
ComputeMaxFun(T.root)
return T.root.yes

ComputeMaxFun(v):
v.yes← v.fun
v.no← 0
for all children w of v

ComputeMaxFun(w)
v.yes← v.yes + w.no
v.no← v.no +max {w.yes, w.no}

(Yes, this is still dynamic programming; we’re only traversing the tree recursively because that’s
the most natural way to traverse trees!1) The algorithm spends O(1) time at each node, and
therefore runs in O(n) time altogether.

2

Solution:
[one function] For each node v in the input tree T , let MaxFun(v) denote the maximum total
“fun” of a legal party among the descendants of v, where v may or may not be invited.

The president of the company must be invited, so none of the president’s “children” in T can
be invited. Thus, the value we need to compute is

root.fun +
∑

grandchildren w of root

MaxFun(w).

The function MaxFun obeys the following recurrence:

MaxFun(v) = max

v.fun +

∑
grandchildren x of v

MaxFun(x)∑
children w of v

MaxFun(w)

(This recurrence does not require a separate base case, because

∑
∅ = 0.) We can memoize

this function by adding an additional field v.maxFun to each node v in the tree. The value at
each node depends only on the values at its children and grandchildren, so we can compute all
values using a postorder traversal of T .

BestParty(T):
ComputeMaxFun(T.root)
party← T.root.fun
for all children w of T.root

for all children x of w
party← party + x.maxFun

return party

ComputeMaxFun(v):
yes← v.fun
no← 0
for all children w of v

ComputeMaxFun(w)
no← no + w.maxFun
for all children x of w

yes← yes + x.maxFun
v.maxFun← max {yes,no}

(Yes, this is still dynamic programming; we’re only traversing the tree recursively because that’s
the most natural way to traverse trees!2)

The algorithm spends O(1) time at each node (because each node has exactly one parent and
one grandparent) and therefore runs in O(n) time altogether.

Rubric: 10 points: standard dynamic programming rubric. These are not the only correct solu-
tions.

3

