
HW 6: Solved Problem Instructors: Hassanieh, Miller

CS/ECE 374 B: Algorithms & Models of Computation, Spring 2020 Version: 1.0

1 A shuffle of two strings X and Y is formed by interspersing the characters into a new string,
keeping the characters of X and Y in the same order. For example, the string BANANAANANAS is a
shuffle of the strings BANANA and ANANAS in several different ways:

BANANAANANAS BANANAANANAS BANANAANANAS

Similarly, PRODGYRNAMAMMIINCG and DYPRONGARMAMMICING are shuffles of DYNAMIC and PROGRAMMING:

PRODGYRNAMAMMIINCG DYPRONGARMAMMICING

Given three strings A[1 ..m], B[1 .. n], and C[1 ..m + n], describe and analyze an algorithm to
determine whether C is a shuffle of A and B.

Solution:
We define a boolean function Shuf(i, j), which is True if and only if the prefix C[1 .. i+ j] is a
shuffle of the prefixes A[1 .. i] and B[1 .. j]. This function satisfies the following recurrence:

Shuf(i, j) =



True if i = j = 0

Shuf(0, j − 1) ∧ (B[j] = C[j]) if i = 0 and j > 0

Shuf(i− 1, 0) ∧ (A[i] = C[i]) if i > 0 and j = 0(
Shuf(i− 1, j) ∧ (A[i] = C[i+ j])

)
∨
(
Shuf(i, j − 1) ∧ (B[j] = C[i+ j])

)
if i > 0 and j > 0

We need to compute Shuf(m,n).
We can memoize all function values into a two-dimensional array Shuf[0 ..m][0 .. n]. Each array
entry Shuf[i, j] depends only on the entries immediately below and immediately to the right:
Shuf[i − 1, j] and Shuf[i, j − 1]. Thus, we can fill the array in standard row-major order. The
original recurrence gives us the following pseudocode which runs in O(mn) time :

Shuffle?(A[1 ..m], B[1 .. n], C[1 ..m+ n]):
Shuf[0, 0]← True
for j ← 1 to n
Shuf[0, j]← Shuf[0, j − 1] ∧ (B[j] = C[j])

for i← 1 to n
Shuf[i, 0]← Shuf[i− 1, 0] ∧ (A[i] = B[i])

for j ← 1 to n
Shuf[i, j]← False
if A[i] = C[i+ j]

Shuf[i, j]← Shuf[i, j] ∨ Shuf[i− 1, j]
if B[i] = C[i+ j]

Shuf[i, j]← Shuf[i, j] ∨ Shuf[i, j − 1]

return Shuf[m,n]

1



Rubric: Standard dynamic programming rubric:
For problems worth 10 poins:

• 6 points for a correct recurrence, described either using mathematical notation or as pseudocode
for a recursive algorithm.

+ 1 point for a clear English description of the function you are trying to evaluate. (Other-
wise, we don’t even know what you are trying to do.) Automatic zero if the English
description is missing.

+ 1 point for stating how to call your function to get the final answer.

+ 1 point for base case(s). −1/2 for one minor bug, like a typo or an off-by-one error.

+ 3 points for recursive case(s). −1 for each minor bug, like a typo or an off-by-one error. No
credit for the rest of the problem if the recursive case(s) are incorrect.

• 4 points for details of the dynamic programming algorithm

+ 1 point for describing the memoization data structure

+ 2 points for describing a correct evaluation order; a clear picture is usually sufficient. If you
use nested loops, be sure to specify the nesting order.

+ 1 point for time analysis

• It is not necessary to state a space bound.

• For problems that ask for an algorithm that computes an optimal structure—such as a subset,
partition, subsequence, or tree—an algorithm that computes only the value or cost of the optimal
structure is sufficient for full credit, unless the problem says otherwise.

• Official solutions usually include pseudocode for the final iterative dynamic programming algo-
rithm, but iterative psuedocode is not required for full credit . If your solution includes
iterative pseudocode, you do not need to separately describe the recurrence, memoization struc-
ture, or evaluation order. (But you still need to describe the underlying recursive function in
English.)

• Official solutions will provide target time bounds. Algorithms that are faster than this target are
worth more points; slower algorithms are worth fewer points, typically by 2 or 3 points (out of 10)
for each factor of n. Partial credit is scaled to the new maximum score, and all points above 10
are recorded as extra credit.

We rarely include these target time bounds in the actual questions, because when we have
included them, significantly more students turned in algorithms that meet the target time bound
but did not work (earning 0/10) instead of correct algorithms that are slower than the target time
bound (earning 8/10).

2


