16 (100 PTS.) Piazza.

Recently the ECE department discussed Piazza engagement. Haitham believes the student engagement in CS/ECE 374B is highly skewed, despite the many questions being asked. He claims that the top 5% of student askers (who ask many questions) contribute more than ten times the total number of questions asked by the bottom 90% of student askers (who ask little to no questions). To verify this claim, Andrew downloaded the Piazza statistics which give him an n element unsorted array A, where $A[i]$ is the number of questions asked by student i.
16.A. (20 PTs.) Describe an $O(n)$-time algorithm that given A checks whether the top 5% contribute more than ten times the questions asked by the bottom 90% together. Assume for simplicity that n is a multiple of 100 and that all numbers in A are distinct. Note that sorting A will easily solve the problem but will take $\Omega(n \log n)$ time.
16.B. (70 PTs.) More generally we may want to compute the total number of questions of the top $p \%$ of student askers for various values of p. Suppose we are given A and k distinct numbers $0<p_{1}<p_{2}<\ldots<p_{k}<100 \%$ and we wish to compute the total number of questions of the top $p_{i} \%$ of student askers for each $1 \leq i \leq k$. Assume for simplicity that $n p_{i}$ is an integer for each i.

Describe an algorithm for this problem that runs in $O(n \log k)$ time. You should prove the correctness of the algorithm and its runtime complexity.

Note that sorting will allow you to solve the problem in $O(n \log n)$ time but when $k \ll n$, $O(n \log k)$ is faster. Also, an $O(n k)$ time algorithm is relatively easy by repeating the previous part k times.
16.C. (10 PTs.) In an effort to encourage more discussion on Piazza, you will receive 10 points of credit if by March 23, 2020, you have asked a question or answered a question or contributed to any Piazza discussion at least once.

17 (100 PTS.) Strings

Let Σ be a finite alphabet and let L_{1} and L_{2} be two languages over Σ. Assume you have access to a subroutine $\operatorname{IsString} \operatorname{InL}(u, L)$ which returns true if $u \in L$ and false otherwise. Assume that IsStringInL (u, L) runs in constant time $O(1)$.

Using the subroutine as black boxes describe an efficient algorithm that given an arbitrary string $w \in \Sigma^{*}$ decides whether $w \in\left(L_{1} \bullet L_{2}\right)^{*}$. Evaluate the running time of your algorithm in terms of $n=|w|$.

18 (100 PTS.) Invest.
You have a group of investor friends who are looking at n consecutive days of a given stock at some point in the past. The days are numbered. $i=1,2, \ldots, n$. For each day i, they have a price $p(i)$ per share for the stock on that day.

For certain (possibly large) values of k, they want to study what they call k-shot strategies. A k-shot strategy is a collection of m pairs of days $\left(b_{1}, s_{1}\right), \ldots,\left(b_{m}, s_{m}\right)$, where $0 \leq m \leq k$ and

$$
1 \leq b_{1}<s_{1}<b_{2}<s_{2} \cdots<b_{m}<s_{m} \leq n
$$

We view these as a set of up to k nonoverlapping intervals, during each of which the investors buy 1,000 shares of the stock (on day b_{i}) and then sell it (on day s_{i}). The return of a given k-shot strategy is simply the profit obtained from the m buy-sell transactions, namely,

$$
1000 \cdot \sum_{i=1}^{m}\left(p\left(s_{i}\right)-p\left(b_{i}\right)\right) .
$$

Design an efficient algorithm that determines, given the sequence of prices, the k-shot strategy with the maximum possible return. Since k may be relatively large, your running time should be polynomial in both n and k.

