CS/ECE 374 B: Algorithms & Models of Computation, Spring 2020 Version: 1.1

Submission instructions as in previous <u>homeworks</u>.

· erbien: 1.1

16 (100 PTS.) **Piazza**.

Recently the ECE department discussed Piazza engagement. Haitham believes the student engagement in CS/ECE 374B is highly skewed, despite the many questions being asked. He claims that the top 5% of student askers (who ask many questions) contribute more than ten times the total number of questions asked by the bottom 90% of student askers (who ask little to no questions). To verify this claim, Andrew downloaded the Piazza statistics which give him an n element unsorted array A, where A[i] is the number of questions asked by student i.

- 16.A. (20 PTS.) Describe an O(n)-time algorithm that given A checks whether the top 5% contribute more than ten times the questions asked by the bottom 90% together. Assume for simplicity that n is a multiple of 100 and that all numbers in A are distinct. Note that sorting A will easily solve the problem but will take $\Omega(n \log n)$ time.
- **16.B.** (70 PTS.) More generally we may want to compute the total number of questions of the top p% of student askers for various values of p. Suppose we are given A and k distinct numbers $0 < p_1 < p_2 < \ldots < p_k < 100\%$ and we wish to compute the total number of questions of the top $p_i\%$ of student askers for each $1 \le i \le k$. Assume for simplicity that np_i is an integer for each i.

Describe an algorithm for this problem that runs in $O(n \log k)$ time. You should prove the correctness of the algorithm and its runtime complexity.

Note that sorting will allow you to solve the problem in $O(n \log n)$ time but when $k \ll n$, $O(n \log k)$ is faster. Also, an O(nk) time algorithm is relatively easy by repeating the previous part k times.

16.C. (10 PTS.) In an effort to encourage more discussion on Piazza, you will receive 10 points of credit if by March 23, 2020, you have asked a question or answered a question or contributed to any Piazza discussion at least once.

17 (100 PTS.) Strings

Let Σ be a finite alphabet and let L_1 and L_2 be two languages over Σ . Assume you have access to a subroutine **IsStringInL**(u, L) which returns true if $u \in L$ and false otherwise. Assume that **IsStringInL**(u, L) runs in constant time O(1).

Using the subroutine as black boxes describe an efficient algorithm that given an arbitrary string $w \in \Sigma^*$ decides whether $w \in (L_1 \bullet L_2)^*$. Evaluate the running time of your algorithm in terms of n = |w|.

18 (100 PTS.) Invest.

You have a group of investor friends who are looking at n consecutive days of a given stock at some point in the past. The days are numbered. i = 1, 2, ..., n. For each day i, they have a price p(i) per share for the stock on that day.

For certain (possibly large) values of k, they want to study what they call k-shot strategies. A k-shot strategy is a collection of m pairs of days $(b_1, s_1), \ldots, (b_m, s_m)$, where $0 \le m \le k$ and

$$1 \le b_1 < s_1 < b_2 < s_2 \cdots < b_m < s_m \le n.$$

We view these as a set of up to k nonoverlapping intervals, during each of which the investors buy 1,000 shares of the stock (on day b_i) and then sell it (on day s_i). The *return* of a given k-shot strategy is simply the profit obtained from the m buy-sell transactions, namely,

$$1000 \cdot \sum_{i=1}^{m} (p(s_i) - p(b_i)).$$

Design an efficient algorithm that determines, given the sequence of prices, the k-shot strategy with the maximum possible return. Since k may be relatively large, your running time should be polynomial in both n and k.