HW 5: Solved Problem Instructors: Hassanieh, Miller

CS/ECE 374 B: Algorithms & Models of Computation, Spring 2020 Version: 1.1
1 Suppose we are given two sets of n points, one set {p1, ps,...,pn} on the line y = 0 and the other
set {q1,q2,-..,q,} on the line y = 1. Consider the n line segments connecting each point p; to the

corresponding point ¢;. Describe and analyze a divide-and-conquer algorithm to determine how
many pairs of these line segments intersect, in O(nlogn) time. See the example below.

q5 a9, 4, 9 9 q

p, b, P, P, PP, Py

Seven segments with endpoints on parallel lines, with 11 intersecting pairs.

Your input consists of two arrays P[1..n] and Q1 ..n| of x-coordinates; you may assume that all
2n of these numbers are distinct. No proof of correctness is necessary, but you should justify the
running time.

Solution:

We begin by sorting the array P[1..n] and permuting the array @Q[1..n| to maintain correspon-
dence between endpoints, in O(nlogn) time. Then for any indices ¢ < j, segments i and j
intersect if and only if Q[i] > Q[j]. Thus, our goal is to compute the number of pairs of indices
i < j such that Q[i] > Q[j]. Such a pair is called an inversion.

We count the number of inversions in () using the following extension of mergesort; as a side
effect, this algorithm also sorts Q. If n < 100, we use brute force in O(1) time. Otherwise:

e Recursively count inversions in (and sort) Q[1.. |n/2]].
e Recursively count inversions in (and sort) Q[|n/2] +1..n].
e Count inversions Q[i] > @Q[j] where i < [n/2] and j > |n/2] as follows:
— Color the elements in the Left half Q[1..n/2] bLue.
— Color the elements in the Right half Q[n/2 4+ 1..n] Red.
— Merge Q[1..n/2] and @Q[n/2 + 1..n], maintaining their colors.
— For each blue element Q[i], count the number of smaller red elements Q[j].

The last substep can be performed in O(n) time using a simple for-loop:

COUNTREDBLUE(A[L .. n]):
count < 0
total < 0

fori< 1ton
if Ali] is red
count <— count + 1
else
total < total + count

return total

=+




In fact, we can execute the third merge-and-count step directly by modifying the MERGE al-
gorithm, without any need for “colors”. Here changes to the standard MERGE algorithm are
indicated in red.

MERGEANDCOUNT(A[L..n], m):
11, j<m+1;, count < 0; total < 0

for k< 1ton
ifj>n
Blk| < Ali]; i < i+ 1; total < total + count
else if 1 > m
Blk] < A[j]; j+ j+1; count + count+ 1
else if A[i] < A[j]
Blk] < Ali]; i+ i+ 1; total < total + count
else
Blk]| < Aljl; j <« j+1; count < count+ 1
for k< 1ton
Alk] «+ B[]
return total

We can further optimize this algorithm by observing that count is always equal to j —m — 1.
(Proof: Initially, j = m + 1 and count = 0, and we always increment j and count together.)

MERGEANDCOUNT2(A[l..n|,m):
14 1; j<m+1; tolal+ 0
fork< 1ton
ifj>n
Blk] < Ali]; i <1+ 1; total < total+j —m — 1
else if i > m
Blk] « Alj); j«j+1
else if Ai] < A[j]
Blk] < Ali]; i < i+1; total < total+j —m —1
else
Bkl < Alj]; j+j+1
fork<+ 1ton
Alk] < BIk]
return total

The modified MERGE algorithm still runs in O(n) time, so the running time of the resulting
modified mergesort still obeys the recurrence T'(n) = 2T(n/2) + O(n). We conclude that the
overall running time is O(nlogn), as required.

Rubric: 10 points — 2 for base case + 3 for divide (split and recurse) + 3 for conquer (merge and
count) + 2 for time analysis. Max 3 points for a correct O(n?)-time algorithm. This is neither the
only way to correctly describe this algorithm nor the only correct O(nlogn)-time algorithm. No
proof of correctness is required.



