1 Suppose we are given two sets of n points, one set $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ on the line $y=0$ and the other set $\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$ on the line $y=1$. Consider the n line segments connecting each point p_{i} to the corresponding point q_{i}. Describe and analyze a divide-and-conquer algorithm to determine how many pairs of these line segments intersect, in $O(n \log n)$ time. See the example below.

Seven segments with endpoints on parallel lines, with 11 intersecting pairs.
Your input consists of two arrays $P[1 . . n]$ and $Q[1 . . n]$ of x-coordinates; you may assume that all $2 n$ of these numbers are distinct. No proof of correctness is necessary, but you should justify the running time.

Solution:

We begin by sorting the array $P[1 . . n]$ and permuting the array $Q[1 . . n]$ to maintain correspondence between endpoints, in $O(n \log n)$ time. Then for any indices $i<j$, segments i and j intersect if and only if $Q[i]>Q[j]$. Thus, our goal is to compute the number of pairs of indices $i<j$ such that $Q[i]>Q[j]$. Such a pair is called an inversion.
We count the number of inversions in Q using the following extension of mergesort; as a side effect, this algorithm also sorts Q. If $n<100$, we use brute force in $O(1)$ time. Otherwise:

- Recursively count inversions in (and sort) $Q[1 . .\lfloor n / 2\rfloor]$.
- Recursively count inversions in (and sort) $Q[\lfloor n / 2\rfloor+1$.. $n]$.
- Count inversions $Q[i]>Q[j]$ where $i \leq\lfloor n / 2\rfloor$ and $j>\lfloor n / 2\rfloor$ as follows:
- Color the elements in the Left half $Q[1 . . n / 2]$ bLue.
- Color the elements in the Right half $Q[n / 2+1$.. $n]$ Red.
- Merge $Q[1 . . n / 2]$ and $Q[n / 2+1 . . n]$, maintaining their colors.
- For each blue element $Q[i]$, count the number of smaller red elements $Q[j]$.

The last substep can be performed in $O(n)$ time using a simple for-loop:

CountREDBLUE $(A[1 . . n]):$
count $\leftarrow 0$
total $\leftarrow 0$
for $i \leftarrow 1$ to n
if $A[i]$ is red
\quad count \leftarrow count +1
else
\quad total \leftarrow total + count
return total 1

In fact, we can execute the third merge-and-count step directly by modifying the MERGE algorithm, without any need for "colors". Here changes to the standard MERgE algorithm are indicated in red.

```
\(\operatorname{MERGEANDCount}(A[1 . . n], m)\) :
\(i \leftarrow 1 ; j \leftarrow m+1 ;\) count \(\leftarrow 0 ;\) total \(\leftarrow 0\)
for \(k \leftarrow 1\) to \(n\)
    if \(j>n\)
        \(B[k] \leftarrow A[i] ; \quad i \leftarrow i+1 ; \quad\) total \(\leftarrow\) total + count
    else if \(i>m\)
        \(B[k] \leftarrow A[j] ; j \leftarrow j+1 ; \quad\) count \(\leftarrow\) count +1
    else if \(A[i]<A[j]\)
        \(B[k] \leftarrow A[i] ; \quad i \leftarrow i+1 ; \quad\) total \(\leftarrow\) total + count
    else
        \(B[k] \leftarrow A[j] ; \quad j \leftarrow j+1 ;\) count \(\leftarrow\) count +1
for \(k \leftarrow 1\) to \(n\)
    \(A[k] \leftarrow B[k]\)
return total
```

We can further optimize this algorithm by observing that count is always equal to $j-m-1$. (Proof: Initially, $j=m+1$ and count $=0$, and we always increment j and count together.)

```
MergeAndCount2 \((A[1 . . n], m)\) :
\(\bar{i} \leftarrow 1 ; j \leftarrow m+1 ;\) total \(\leftarrow 0\)
for \(k \leftarrow 1\) to \(n\)
    if \(j>n\)
        \(B[k] \leftarrow A[i] ; i \leftarrow i+1 ;\) total \(\leftarrow\) total \(+\boldsymbol{j} \boldsymbol{- m}-\mathbf{1}\)
    else if \(i>m\)
        \(B[k] \leftarrow A[j] ; \quad j \leftarrow j+1\)
    else if \(A[i]<A[j]\)
        \(B[k] \leftarrow A[i] ; i \leftarrow i+1 ;\) total \(\leftarrow\) total \(+\boldsymbol{j} \mathbf{- m} \mathbf{- 1}\)
    else
        \(B[k] \leftarrow A[j] ; \quad j \leftarrow j+1\)
for \(k \leftarrow 1\) to \(n\)
    \(A[k] \leftarrow B[k]\)
return total
```

The modified Merge algorithm still runs in $O(n)$ time, so the running time of the resulting modified mergesort still obeys the recurrence $T(n)=2 T(n / 2)+O(n)$. We conclude that the overall running time is $O(n \log n)$, as required.

Rubric: 10 points $=2$ for base case +3 for divide (split and recurse) +3 for conquer (merge and count) +2 for time analysis. Max 3 points for a correct $O\left(n^{2}\right)$-time algorithm. This is neither the only way to correctly describe this algorithm nor the only correct $O(n \log n)$-time algorithm. No proof of correctness is required.

