
HW 5: Solved Problem Instructors: Hassanieh, Miller

CS/ECE 374 B: Algorithms & Models of Computation, Spring 2020 Version: 1.1

1 Suppose we are given two sets of n points, one set {p1, p2, . . . , pn} on the line y = 0 and the other
set {q1, q2, . . . , qn} on the line y = 1. Consider the n line segments connecting each point pi to the
corresponding point qi. Describe and analyze a divide-and-conquer algorithm to determine how
many pairs of these line segments intersect, in O(n log n) time. See the example below.

q1 q4 q7 q3q5 q2 q6

p1 p4p7 p3 p5p2p6
Seven segments with endpoints on parallel lines, with 11 intersecting pairs.

Your input consists of two arrays P [1 .. n] and Q[1 .. n] of x-coordinates; you may assume that all
2n of these numbers are distinct. No proof of correctness is necessary, but you should justify the
running time.

Solution:

We begin by sorting the array P [1 .. n] and permuting the array Q[1 .. n] to maintain correspon-
dence between endpoints, in O(n log n) time. Then for any indices i < j, segments i and j
intersect if and only if Q[i] > Q[j]. Thus, our goal is to compute the number of pairs of indices
i < j such that Q[i] > Q[j]. Such a pair is called an inversion .

We count the number of inversions in Q using the following extension of mergesort; as a side
e�ect, this algorithm also sorts Q. If n < 100, we use brute force in O(1) time. Otherwise:

• Recursively count inversions in (and sort) Q[1 .. bn/2c].
• Recursively count inversions in (and sort) Q[bn/2c+ 1 .. n].

• Count inversions Q[i] > Q[j] where i ≤ bn/2c and j > bn/2c as follows:
� Color the elements in the Left half Q[1 .. n/2] bLue.

� Color the elements in the Right half Q[n/2 + 1 .. n] Red.

� Merge Q[1 .. n/2] and Q[n/2 + 1 .. n], maintaining their colors.

� For each blue element Q[i], count the number of smaller red elements Q[j].

The last substep can be performed in O(n) time using a simple for-loop:

CountRedBlue(A[1 .. n]):

count← 0
total← 0

for i← 1 to n
if A[i] is red

count← count+ 1
else

total← total+ count

return total
1



In fact, we can execute the third merge-and-count step directly by modifying the Merge al-
gorithm, without any need for �colors�. Here changes to the standard Merge algorithm are
indicated in red.

MergeAndCount(A[1 .. n],m):

i← 1; j ← m+ 1; count← 0; total← 0

for k ← 1 to n
if j > n

B[k]← A[i]; i← i+ 1; total← total+ count

else if i > m
B[k]← A[j]; j ← j + 1; count← count+ 1

else if A[i] < A[j]
B[k]← A[i]; i← i+ 1; total← total+ count

else
B[k]← A[j]; j ← j + 1; count← count+ 1

for k ← 1 to n
A[k]← B[k]

return total

We can further optimize this algorithm by observing that count is always equal to j −m − 1.
(Proof: Initially, j = m+ 1 and count = 0, and we always increment j and count together.)

MergeAndCount2(A[1 .. n],m):

i← 1; j ← m+ 1; total← 0

for k ← 1 to n
if j > n

B[k]← A[i]; i← i+ 1; total← total+ j − m − 1
else if i > m

B[k]← A[j]; j ← j + 1
else if A[i] < A[j]

B[k]← A[i]; i← i+ 1; total← total+ j − m − 1
else

B[k]← A[j]; j ← j + 1

for k ← 1 to n
A[k]← B[k]

return total

The modi�ed Merge algorithm still runs in O(n) time, so the running time of the resulting
modi�ed mergesort still obeys the recurrence T (n) = 2T (n/2) + O(n). We conclude that the
overall running time is O(n log n), as required.

Rubric: 10 points = 2 for base case + 3 for divide (split and recurse) + 3 for conquer (merge and
count) + 2 for time analysis. Max 3 points for a correct O(n2)-time algorithm. This is neither the
only way to correctly describe this algorithm nor the only correct O(n log n)-time algorithm. No
proof of correctness is required.

2


