Let \(L \) be the set of all strings over \(\{0, 1\}^* \) with exactly twice as many 0s as 1s.

1.A. Describe a CFG for the language \(L \).

(Hint: For any string \(u \) define \(\Delta(u) = \#(0,u) - 2\#(1,u) \). Introduce intermediate variables that derive strings with \(\Delta(u) = 1 \) and \(\Delta(u) = -1 \) and use them to define a non-terminal that generates \(L \).)

Solution:

\[
S \rightarrow \varepsilon \mid SS \mid 00S1 \mid 0S1S0 \mid 1S00
\]

1.B. Prove that your grammar \(G \) is correct. As usual, you need to prove both \(L \subseteq L(G) \) and \(L(G) \subseteq L \).

(Hint: Let \(u_{\leq i} \) denote the prefix of \(u \) of length \(i \). If \(\Delta(u) = 1 \), what can you say about the smallest \(i \) for which \(\Delta(u_{\leq i}) = 1 \)? How does \(u \) split up at that position? If \(\Delta(u) = -1 \), what can you say about the smallest \(i \) such that \(\Delta(u_{\leq i}) = -1 \)?)

Solution:

We separately prove \(L \subseteq L(G) \) and \(L(G) \subseteq L \) as follows:

Claim 4.1. \(L(G) \subseteq L \), that is, every string in \(L(G) \) has exactly twice as many 0s as 1s.

Proof: As suggested by the hint, for any string \(u \), let \(\Delta(u) = \#(0,u) - 2\#(1,u) \). We need to prove that \(\Delta(w) = 0 \) for every string \(w \in L(G) \).

Let \(w \) be an arbitrary string in \(L(G) \), and consider an arbitrary derivation of \(w \) of length \(k \). Assume that \(\Delta(x) = 0 \) for every string \(x \in L(G) \) that can be derived with fewer than \(k \) productions. There are five cases to consider, depending on the first production in the derivation of \(w \).

- If \(w = \varepsilon \), then \(\#(0,w) = \#(1,w) = 0 \) by definition, so \(\Delta(w) = 0 \).
- Suppose the derivation begins \(S \rightarrow SS \rightarrow^* w \). Then \(w = xy \) for some strings \(x, y \in L(G) \), each of which can be derived with fewer than \(k \) productions. The inductive hypothesis implies \(\Delta(x) = \Delta(y) = 0 \). It immediately follows that \(\Delta(w) = 0 \).
- Suppose the derivation begins \(S \rightarrow 00S1 \rightarrow^* w \). Then \(w = 00x1 \) for some string \(x \in L(G) \). The inductive hypothesis implies \(\Delta(x) = 0 \). It immediately follows that \(\Delta(w) = 0 \).
- Suppose the derivation begins \(S \rightarrow 1S00 \rightarrow^* w \). Then \(w = 1x00 \) for some string \(x \in L(G) \). The inductive hypothesis implies \(\Delta(x) = 0 \). It immediately follows that \(\Delta(w) = 0 \).
- Suppose the derivation begins \(S \rightarrow 0S1S1 \rightarrow^* w \). Then \(w = 0x1y0 \) for some strings \(x, y \in L(G) \). The inductive hypothesis implies \(\Delta(x) = \Delta(y) = 0 \). It immediately follows that \(\Delta(w) = 0 \).
In all cases, we conclude that $\Delta(w) = 0$, as required. ■

Claim 4.2. $L \subseteq L(G)$; that is, G generates every binary string with exactly twice as many 0s as 1s.

Proof: As suggested by the hint, for any string u, let $\Delta(u) = \#(0, u) - 2\#(1, u)$. For any string u and any integer $0 \leq i \leq |u|$, let u_i denote the ith symbol in u, and let $u_{\leq i}$ denote the prefix of u of length i.

Let w be an arbitrary binary string with twice as many 0s as 1s. Assume that G generates every binary string x that is shorter than w and has twice as many 0s as 1s. There are two cases to consider:

- If $w = \varepsilon$, then $\varepsilon \in L(G)$ because of the production $S \rightarrow \varepsilon$.
- Suppose w is non-empty. To simplify notation, let $\Delta_i = \Delta(w_{\leq i})$ for every index i, and observe that $\Delta_0 = \Delta \big|_w = 0$. There are several subcases to consider:

 - Suppose $\Delta_i = 0$ for some index $0 < i < |w|$. Then we can write $w = xy$, where x and y are non-empty strings with $\Delta(x) = \Delta(y) = 0$. The induction hypothesis implies that $x, y \in L(G)$, and thus the production rule $S \rightarrow SS$ implies that $w \in L(G)$.

 - Suppose $\Delta_i > 0$ for all $0 < i < |w|$. Then w must begin with 00, since otherwise $\Delta_1 = -2$ or $\Delta_2 = -1$, and the last symbol in w must be 1, since otherwise $\Delta_{|w|-1} = -1$. Thus, we can write $w = 00x1$ for some binary string x. We easily observe that $\Delta(x) = 0$, so the induction hypothesis implies $x \in L(G)$, and thus the production rule $S \rightarrow 00S1$ implies $w \in L(G)$.

 - Suppose $\Delta_i < 0$ for all $0 < i < |w|$. A symmetric argument to the previous case implies $w = 1x00$ for some binary string x with $\Delta(x) = 0$. The induction hypothesis implies $x \in L(G)$, and thus the production rule $S \rightarrow 1S00$ implies $w \in L(G)$.

 - Finally, suppose none of the previous cases applies: $\Delta_i < 0$ and $\Delta_j > 0$ for some indices i and j, but $\Delta_i \neq 0$ for all $0 < i < |w|$.

 Let i be the smallest index such that $\Delta_i < 0$. Because Δ_j either increases by 1 or decreases by 2 when we increment j, for all indices $0 < j < |w|$, we must have $\Delta_j > 0$ if $j < i$ and $\Delta_j < 0$ if $j \geq i$.

 In other words, there is a unique index i such that $\Delta_{i-1} > 0$ and $\Delta_i < 0$. In particular, we have $\Delta_1 > 0$ and $\Delta_{|w|-1} < 0$. Thus, we can write $w = 0x1y0$ for some binary strings x and y, where $|0x1| = i$.

 We easily observe that $\Delta(x) = \Delta(y) = 0$, so the inductive hypothesis implies $x, y \in L(G)$, and thus the production rule $S \rightarrow 0S1S0$ implies $w \in L(G)$.

In all cases, we conclude that G generates w. ■

Together, Claim 1 and Claim 2 imply $L = L(G)$.

Rubric: 10 points:
• part (a) = 4 points. As usual, this is not the only correct grammar.
• part (b) = 6 points = 3 points for \subseteq + 3 points for \supseteq, each using the standard induction template (scaled).