10 (100 PTS.) Prove Regular

Let Σ be finite alphabet. A code is a mapping $f: \Sigma \rightarrow\{0,1\}^{+}$. For example, if $\Sigma=\{a, b, c\}$, a code f might be $f(a)=101, f(b)=01100$, and $f(c)=10$. (To simplify things, we assume for any $a \neq b$, we have $f(a) \neq f(b)$.)
For a string $w_{1} w_{2} \cdots w_{m} \in \Sigma^{*}$, we define $f(w)=f\left(w_{1}\right) f\left(w_{2}\right) \cdots f\left(w_{m}\right)$. In the above code,

$$
f(a b c b a)=101 \bullet 01100 \bullet 10 \bullet 01100 \bullet 101 .=101011001001100101 .
$$

10.A. (10 PTS.) Let L be the language of the following DFA M. What language does L represent?

10.B. (20 PTs.) Working on the DFA M from 10.A. construct an NFA for the language $f(L)$. Here, $f(L)=\{f(w) \mid w \in L\}$ is the code language where f is code from the above example.
10.C. (70 PTS.) Let $L \subseteq \Sigma^{*}$ be a arbitrary regular language. Prove that the coded language $f(L)=\{f(w) \mid w \in L\}$ is regular.

Specifically, given a DFA $M=(Q, \Sigma, \delta, s, A)$ for L, describe how to build an NFA N for $f(L)$. Then, prove the correctness of your construction, i.e., the language of the constructed NFA is indeed the desired language $f(L)$. Your construction and proof should be for any arbitrary code f and not just the code in the example above. (30 points for a correct construction, and 40 points for a correct proof of correctness.)

11 (100 PTS.) Prove Not Regular

Prove that the following languages in 11.A. to 11.C. are not regular by providing a fooling set. You need to prove that it is an infinite fooling and valid fooling set.
11.A. (25 PTS.) $L=\left\{0^{i} 1^{j} 2^{k} \mid i+j=k+1\right\}$.
11.B. (25 PTS.) $L=\left\{0^{n^{3}} \mid n \geq 0\right\}$.
11.C. (25 PTs.) $L=\left\{0^{k} w \bar{w} 1^{k} \mid 0 \leq k \leq 3, w \in\{0,1\}^{+}\right\}$, where \bar{w} is the complement bit-wise not operator. For $w=w_{1} w_{2} \ldots w_{m} \in\{0,1\}^{*}$, we define $\bar{w}=\overline{w_{1}} \overline{w_{2}} \ldots \overline{w_{m}}$, for $\overline{0}=1$ and $\overline{1}=0$.
11.D. (25 PTS.) Suppose L is not regular. Show that $L \cup L^{\prime}$ is not regular for any finite language L^{\prime}. Give a simple example to show that $L \cup L^{\prime}$ may be regular if L^{\prime} is infinite.

12 (100 PTs.) Context Free Grammar
Describe a context free grammar for the following languages in 12.A. to 12.C.. Clearly explain how they work and the role of each non-terminal. Unclear grammars will receive little to no credit.
12.A. (20 PTS.) $L_{1}=\left\{0^{i} 1^{j} 2^{k} 3^{\ell} 4^{t} \mid i, j, k, \ell, t \geq 0\right.$ and $\left.i+j+k+t=\ell\right\}$.
12.B. (20 PTS.) $L_{2}=\{0,1\}^{*} \backslash\left\{0^{n} 1^{n} \mid n \geq 0\right\}$, i.e., the complement of the language $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.
12.C. (20 PTS.) $L_{3}=\left\{0^{i} 1^{j} 2^{k} \mid k=2(i+j)\right\}$.
12.D. (40 PTS .) Prove that your grammar for L_{3} in 12.C. is correct. You need to prove that $L_{3} \subseteq L(G)$ and $L(G) \subseteq L_{3}$ where G is your grammar from part 12.C.. (See solved problem for an example of how this is done.)

