\mathbf{CS}	ECE 374 B: Algorithms	& Models of C	Computation,	Spring 2020	Version: 2.5
---------------	-----------------------	---------------	--------------	-------------	--------------

Submission instructions as in previous <u>homeworks</u>.

7 (100 PTS.) Construct NFAs

For each of the following languages over $\Sigma = \{3, 7, 4\}$, draw an NFA that accepts them. Your NFA should have a small number of states (at most say 14 states). Provide a brief explanation for your solution.

- **7.A.** (20 PTS.) $\Sigma^* 3\Sigma^* 7\Sigma^* 4\Sigma^*$
- **7.B.** (20 PTS.) $(3(3+7)^*3+4(3+4)^*4+7(4+7)^*7)^*$
- **7.C.** (20 PTS.) All strings in Σ^* that have a substring in $34(3+4+7)^27$.
- **7.D.** (20 PTS.) All strings in Σ^* that contain the substrings 344 and 443.
- **7.E.** (20 PTS.) All strings in Σ^* that satisfy at least one of the following:
 - The number of times 4 appears is divisible by 4.
 - Every non-empty maximal substring of consecutive 7s is odd.
 - Every non-empty maximal substring of consecutive 3s is divisible by 3.

8 (100 PTS.) **DFAs to NFAs**

Given a DFA $M = (\Sigma, Q, \delta, s, A)$ that accepts L, construct an NFA N that accepts the following languages. You can assume $\Sigma = \{0, 1\}$ in **8.A.** and **8.B.** Provide a brief explanation for your solution.

- **8.A.** (25 PTS.) RemoveOnes(L) := $\{0^{\#_0(w)} \mid w \in L\}$; i.e., removes all 1s from the strings.
- **8.B.** (25 PTS.) RemoveOnes⁻¹(L) := { $w \in \Sigma^* \mid 0^{\#_0(w)} \in L$ }; i.e., puts back the 1s.
- 8.C. (25 PTS.) Add-k-Ones(L) := inserts k 1s into the string. For example, Add-3- $Ones(L) := {x1y1z1w \mid xyzw \in L}.$
- **8.D.** (25 PTS.) Substrings(L) := $\{y \mid xyz \in L \text{ for some } x, y, z \in \Sigma^*\}$; i.e., the language of all substrings of strings in L. For example, if $L = \{ABC\}$, Substrings(L) = $\{\epsilon, A, B, C, AB, BC, ABC\}$.

9 (100 PTS.) Reg. Exp. to NFA to DFA

For each of the following regular expressions:

- 1. Construct an NFA corresponding to the regular expression using Thompson's algorithm.
- 2. Use the incremental subset construction to convert the NFA to a DFA
- 3. Describe in natural english text the language defined by the regular expression.
- 4. Create another DFA with at most say 4 states to recognize the language.
- **9.A.** (50 PTS.) $1^* (01^*01^*)^* 01^*$
- **9.B.** (50 PTS.) $(10+0)^*(1+\epsilon)$