1

CS/ECE 374 B: Algorithms & Models of Computation, Spring 2020

Instructors: Hassanieh, Miller

Each homework assignment will include at least one solved problem, similar to the problems assigned in that homework, together with the grading rubric we would apply *if* this problem appeared on a homework or exam. These model solutions illustrate our recommendations for structure, presentation, and level of detail in your homework solutions. Of course, the actual *content* of your solutions won't match the model solutions, because your problems are different!

Solved Problems

1 Recall that the *reversal* w^R of a string w is defined recursively as follows:

$$w^{R} := \begin{cases} \epsilon & \text{if } w = \epsilon \\ x^{R} \bullet a & \text{if } w = a \cdot x \end{cases}$$

A *palindrome* is any string that is equal to its reversal, like *AMANAPLANACANALPANAMA*, *RACECAR*, *POOP*, *I*, and the empty string.

- 1. Give a recursive definition of a palindrome over the alphabet Σ .
- 2. Prove $w = w^R$ for every palindrome w (according to your recursive definition).
- 3. Prove that every string w such that $w = w^R$ is a palindrome (according to your recursive definition).

In parts (b) and (c), you may assume without proof that $(x \cdot y)^R = y^R \bullet x^R$ and $(x^R)^R = x$ for all strings x and y.

Solution:

- 1. A string $w \in \Sigma^*$ is a palindrome if and only if either
 - $w = \epsilon$, or
 - w = a for some symbol $a \in \Sigma$, or
 - w = axa for some symbol $a \in \Sigma$ and some *palindrome* $x \in \Sigma^*$.

Rubric: 2 points = 1/2 for each base case + 1 for the recursive case. No credit for the rest of the problem unless this is correct.

2. Let w be an arbitrary palindrome.

Assume that $x = x^R$ for every palindrome x such that |x| < |w|.

There are three cases to consider (mirroring the three cases in the definition):

- If $w = \epsilon$, then $w^R = \epsilon$ by definition, so $w = w^R$.
- If w = a for some symbol $a \in \Sigma$, then $w^R = a$ by definition, so $w = w^R$.

• Suppose w = axa for some symbol $a \in \Sigma$ and some palindrome $x \in P$. Then

	$w^R = (a \cdot x \bullet a)^R$
by definition of reversal	$= (x \bullet a)^R \bullet a$
You said we could assume this.	$= a^R \bullet x^R \bullet a$
by definition of reversal	$= a \bullet x^R \bullet a$
by the inductive hypothesis	$= a \bullet x \bullet a$
by assumption	= w

In all three cases, we conclude that $w = w^R$. Rubric: 4 points: standard induction rubric (scaled)

- 3. Let w be an arbitrary string such that $w = w^R$. Assume that every string x such that |x| < |w| and $x = x^R$ is a palindrome. There are three cases to consider (mirroring the definition of "palindrome"):
 - If $w = \epsilon$, then w is a palindrome by definition.
 - If w = a for some symbol $a \in \Sigma$, then w is a palindrome by definition.
 - Otherwise, we have w = ax for some symbol a and some non-empty string x. The definition of reversal implies that w^R = (ax)^R = x^Ra. Because x is non-empty, its reversal x^R is also non-empty. Thus, x^R = by for some symbol b and some string y. It follows that w^R = bya, and therefore w = (w^R)^R = (bya)^R = ay^Rb.

[At this point, we need to prove that a = b and that y is a palindrome.]

Our assumption that $w = w^R$ implies that $bya = ay^R b$. The recursive definition of string equality immediately implies a = b.

Because a = b, we have $w = ay^R a$ and $w^R = aya$. The recursive definition of string equality implies $y^R a = ya$. It immediately follows that $(y^R a)^R = (ya)^R$. Known properties of reversal imply $(y^R a)^R = a(y^R)^R = ay$ and $(ya)^R = ay^R$. It follows that $ay^R = ay$, and therefore $y = y^R$. The inductive hypothesis now implies that y is a palindrome.

We conclude that w is a palindrome by definition.

In all three cases, we conclude that w is a palindrome.

Rubric: 4 points: standard induction rubric (scaled).

• No penalty for jumping from $aya = ay^R a$ directly to $y = y^R$.

Rubric:[induction] For problems worth 10 points:

- + 1 for explicitly considering an *arbitrary* object
- + 2 for a valid **strong** induction hypothesis
 - Deadly Sin! Automatic zero for stating a weak induction hypothesis, unless the rest of the proof is *perfect*.
- + 2 for explicit exhaustive case analysis

- No credit here if the case analysis omits an infinite number of objects. (For example: all odd-length palindromes.)
- -1 if the case analysis omits an finite number of objects. (For example: the empty string.)
- -1 for making the reader infer the case conditions. Spell them out!
- No penalty if cases overlap (for example:
- + 1 for cases that do not invoke the inductive hypothesis ("base cases")
 - No credit here if one or more "base cases" are missing.
- + 2 for correctly applying the *stated* inductive hypothesis
 - No credit here for applying a *different* inductive hypothesis, even if that different inductive hypothesis would be valid.
- + 2 for other details in cases that invoke the inductive hypothesis ("inductive cases")
 - No credit here if one or more "inductive cases" are missing.