
Discussion 08b: Friday, March 13, 2020 Version: 1.01 CS/ECE 374 B, Spring 2020

1 A basic arithmetic expression is composed of characters from the set {1,+,×} and parentheses. Almost
every integer can be represented by more than one basic arithmetic expression. For example, all of the
following basic arithmetic expression represent the integer 14:

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

((1 + 1)× (1 + 1 + 1 + 1 + 1)) + ((1 + 1)× (1 + 1))

(1 + 1)× (1 + 1 + 1 + 1 + 1 + 1 + 1)

(1 + 1)× (((1 + 1 + 1)× (1 + 1)) + 1)

Describe and analyze an algorithm to compute, given an integer n as input, the minimum number of 1’s in
a basic arithmetic expression whose value is equal to n. The number of parentheses doesn’t matter, just
the number of 1’s. For example, when n = 14, your algorithm should return 8, for the final expression
above. The running time of your algorithm should be bounded by a small polynomial function of n.

Solution:
Let Min1s(n) denote the minimum number of 1s in a basic arithmetic expression with value n. This
function obeys the following recurrence:

Min1s(n) =


1 if n = 1

min


min

{
Min1s(m) + Min1s(n−m)

∣∣ 1 ≤ m ≤ n/2
}

min

{
Min1s(m) + Min1s(n/m)

∣∣∣∣∣ 1 ≤ m ≤
√
n and

n/m is an integer

}
 otherwise

Here are the first twenty values of this function:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 5 6 6 6 7 8 7 8 8 8 8 9 8 9 9

We can memoize this function into a one-dimensional array Min1s[1 . . n]. Each entry Min1s[i] depends
on all entries Min1s[j] with j < i, so we can fill the array in increasing index order.

MinOnes(n):
Min1s[1]← 1
for i← 2 to n

Min1s[i]← i // Easy upper bound
for m← 1 to i/2

Min1s[i]← min {Min1s[i], Min1s[m] + Min1s[i−m]}
if bi/mc ·m = i

Min1s[i]← min
{
Min1s[i], Min1s[m] + Min1s[i/m]

}
return Min1s[n]

The resulting algorithm runs in O(n2) time .

To think about later:

1



2 Suppose you are given a sequence of integers separated by + and − signs; for example:

1 + 3− 2− 5 + 1− 6 + 7

You can change the value of this expression by adding parentheses in different places. For example:

1 + 3− 2− 5 + 1− 6 + 7 = −1
(1 + 3− (2− 5)) + (1− 6) + 7 = 9

(1 + (3− 2))− (5 + 1)− (6 + 7) = −17

Describe and analyze an algorithm to compute, given a list of integers separated by + and − signs, the
maximum possible value the expression can take by adding parentheses. Parentheses must be used only
to group additions and subtractions; in particular, do not use them to create implicit multiplication as in
1 + 3(−2)(−5) + 1− 6 + 7 = 33.

Solution:
Suppose the input consists of an array X[0 . . 2n], where X[i] is an integer for every even index i and
X[i] ∈ {+,−} for every odd index i.

Let Max(i, k) and Min(i, k) respectively denote the maximum and minimum values obtainable by paren-
thesizing the subexpression X[2i . . 2k]. We need to compute Max(0, n). These functions obey the
following mutual recurrences:

Max(i, k) =



X[2i] if i = k

max


max

{
Max(i, j) + Max(j + 1, k)

∣∣∣∣∣ i ≤ j < k

X[2j + 1] = +

}

max

{
Max(i, j)−Min(j + 1, k)

∣∣∣∣∣ i ≤ j < k

X[2j + 1] = −

}
 otherwise

Min(i, k) =



X[2i] if i = k

min


min

{
Min(i, j) + Min(j + 1, k)

∣∣∣∣∣ i ≤ j < k

X[2j + 1] = +

}

min

{
Min(i, j)−Max(j + 1, k)

∣∣∣∣∣ i ≤ j < k

X[2j + 1] = −

}


otherwise

We can memoize each of these functions into a two-dimensional array. Each entry Mxx[i, k] depends on
earlier entries in the same row of the same array, and later entries in the same column in both arrays.
Thus, we can fill both arrays simultaneously, by considering rows from bottom to top in the outer loop,
and considering each row from left to right in the inner loop.

The resulting algorithm (shown on the next page) runs in O(n3) time . See Figure ?? for pseudo-code.

2



MaxValue(X[0 . . 2n]):
for i← n down to 0

Max[i, i]← X[2i]
Min[i, i]← X[2i]
for k ← i+ 1 to n

localMax← −∞
localMin←∞
for j ← i to k − 1

if X[2j + 1] = +
localMax← max {localMax, Max[i, j] + Max[j + 1, k]}
localMin← min {localMin, Min[i, j] + Min[j + 1, k]}

else
localMax← max {localMax, Max[i, j]−Min[j + 1, k]}
localMin← min {localMin, Min[i, j]−Max[j + 1, k]}

Max[i, k]← localMax
Min[i, k]← localMin

return Max[0, n]

Figure 1: Pseudo-code

3


