Prove that each of the following languages is **not** regular.

 $1 \quad \{0^{2^n} \mid n \ge 0\}.$

Solution:

Let
$$F = L = \{0^{2^n} \mid n \ge 0\}.$$

Let x and y be arbitrary elements of F.

Then $x = 0^{2^i}$ and $y = 0^{2^j}$ for some non-negative integers x and y.

Let $z = 0^{2^i}$.

Then $xz = 0^{2^i}0^{2^i} = 0^{2^{i+1}} \in L$.

And $yz = 0^{2^{j}}0^{2^{i}} = 0^{2^{i}+2^{j}} \notin L$, because $i \neq j$

Thus, F is a fooling set for L.

Because F is infinite, L cannot be regular.

Solution:

For any non-negative integers $i \neq j$, the strings 0^{2^i} and 0^{2^j} are distinguished by the suffix 0^{2^i} , because $0^{2^i}0^{2^i} = 0^{2^{i+1}} \in L$ but $0^{2^j}0^{2^i} = 0^{2^{i+j}} \notin L$. Thus L itself is an infinite fooling set for L.

Version: 2.01

$2 \quad \{0^{2n}1^n \mid n \ge 0\}$

Solution:

Let F be the language 0^* .

Let x and y be arbitrary strings in F.

Then $x = 0^i$ and $y = 0^j$ for some non-negative integers $i \neq j$.

Let $z = 0^{i}1^{i}$.

Then $xz = 0^{2i}1^i \in L$.

And $yz = 0^{i+j}1^i \notin L$, because $i + j \neq 2i$.

Thus, F is a fooling set for L.

Because F is infinite, L cannot be regular.

Solution:

For all non-negative integers $i \neq j$, the strings 0^i and 0^j are distinguished by the suffix $0^i 1^i$, because $0^{2i} 1^i \in L$ but $0^{i+j} 1^i \notin L$. Thus, the language 0^* is an infinite fooling set for L.

Solution:

For all non-negative integers $i \neq j$, the strings 0^{2i} and 0^{2j} are distinguished by the suffix 1^i , because $0^{2i}1^i \in L$ but $0^{2j}1^i \notin L$. Thus, the language $(00)^*$ is an infinite fooling set for L.

 $3 \quad \{0^m 1^n \mid m \neq 2n\}$

Solution:

```
Let F be the language 0^*.

Let x and y be arbitrary strings in F.

Then x=0^i and y=0^j for some non-negative integers i\neq j.

Let z=0^i1^i.

Then xz=0^{2i}1^i\not\in L.

And yz=0^{i+j}1^i\in L, because i+j\neq 2i.

Thus, F is a fooling set for L.

Because F is infinite, L cannot be regular.
```

Solution:

For all non-negative integers $i \neq j$, the strings 0^{2i} and 0^{2j} are distinguished by the suffix 1^i , because $0^{2i}1^i \notin L$ but $0^{2j}1^i \in L$. Thus, the language $(00)^*$ is an infinite fooling set for L.

4 Strings over $\{0,1\}$ where the number of 0s is exactly twice the number of 1s.

Solution:

```
Let F be the language 0^*.

Let x and y be arbitrary strings in F.

Then x=0^i and y=0^j for some non-negative integers i\neq j.

Let z=0^i1^i.

Then xz=0^{2i}1^i\in L.

And yz=0^{i+j}1^i\not\in L, because i+j\neq 2i.

Thus, F is a fooling set for L.

Because F is infinite, F cannot be regular.
```

Solution:

For all non-negative integers $i \neq j$, the strings 0^{2i} and 0^{2j} are distinguished by the suffix 1^i , because $0^{2i}1^i \in L$ but $0^{2j}1^i \notin L$. Thus, the language $(00)^*$ is an infinite fooling set for L.

Solution:

If L were regular, then the language

$$((0+1)^* \setminus L) \cap 0^*1^* = \{0^m1^n \mid m \neq 2n\}$$

would also be regular, because regular languages are closed under complement and intersection. But we just proved that $\{0^m1^n \mid m \neq 2n\}$ is not regular in problem 3. [Yes, this proof would be worth full credit, either in homework or on an exam.]

5 Strings of properly nested parentheses (), brackets [], and braces {}. For example, the string ([]){} is in this language, but the string ([)] is not, because the left and right delimiters don't match.

Solution:

```
Let F be the language (*.
```

Let x and y be arbitrary strings in F.

Then $x = i^{i}$ and $y = i^{j}$ for some non-negative integers $i \neq j$.

Let $z =)^i$.

Then $xz = {i \choose i}^i \in L$.

And $yz = {\binom{j}{i}}^i \notin L$, because $i \neq j$.

Thus, F is a fooling set for L.

Because F is infinite, L cannot be regular.

Solution:

For any non-negative integers $i \neq j$, the strings (i and (j are distinguished by the suffix) i , because (i) $^i \in L$ but (i) $^j \notin L$. Thus, the language (* is an infinite fooling set.

6 Strings of the form $w_1 \# w_2 \# \cdots \# w_n$ for some $n \geq 2$, where each substring w_i is a string in $\{0,1\}^*$, and some pair of substrings w_i and w_j are equal.

Solution:

Let F be the language 0^* .

Let x and y be arbitrary strings in F.

Then $x = 0^i$ and $y = 0^j$ for some non-negative integers $i \neq j$.

Let $z = \#0^i$.

Then $xz = 0^i \# 0^i \in L$.

And $yz = 0^j \# 0^i \notin L$, because $i \neq j$.

Thus, F is a fooling set for L.

Because F is infinite, L cannot be regular.

Solution:

For any non-negative integers $i \neq j$, the strings 0^i and 0^j are distinguished by the suffix $\#0^i$, because $0^i \#0^i \in L$ but $0^j \#0^i \notin L$. Thus, the language 0^* is an infinite fooling set.

Extra problems

${\bf 7} \quad \{0^{n^2} \mid n \ge 0\}$

Solution:

Let x and y be distinct arbitrary strings in L.

Without loss of generality, $x = 0^{i^2}$ and $y = 0^{j^2}$ for some $i > j \ge 0$.

Let $z = 0^{2i+1}$.

Then $xz = 0^{i^2+2i+1} = 0^{(i+1)^2} \in L$

On the other hand, $yz = 0^{i^2+2j+1} \notin L$, because $i^2 < i^2 + 2j + 1 < (i+1)^2$.

Thus, z distinguishes x and y.

We conclude that L is an infinite fooling set for L, so L cannot be regular.

Solution:

Let x and y be distinct arbitrary strings in 0^* .

Without loss of generality, $x = 0^i$ and $y = 0^j$ for some $i > j \ge 0$.

Let $z = 0^{i^2 + i + 1}$.

Then $xz = 0^{i^2 + 2i + 1} = 0^{(i+1)^2} \in L$.

On the other hand, $yz = 0^{i^2+i+j+1} \not\in L$, because $i^2 < i^2+i+j+1 < (i+1)^2$.

Thus, z distinguishes x and y.

We conclude that 0^* is an infinite fooling set for L, so L cannot be regular.

Solution:

Let x and y be distinct arbitrary strings in 0000^* .

Without loss of generality, $x = 0^i$ and $y = 0^j$ for some $i > j \ge 3$.

Let $z = 0^{i^2 - i}$.

Then $xz = \mathbf{0}^{i^2} \in L$.

On the other hand, $yz = 0^{i^2 - i + j} \notin L$, because

$$(i-1)^2 \ = \ i^2 - 2i + 1 \ < \ i^2 - i \ < \ i^2 - i + j \ < \ i^2.$$

4

(The first inequalities requires $i \geq 2$, and the second $j \geq 1$.)

Thus, z distinguishes x and y.

We conclude that 0000^* is an infinite fooling set for L, so L cannot be regular.

8 $\{w \in (0+1)^* \mid w \text{ is the binary representation of a perfect square}\}$

Solution:

We design our fooling set around numbers of the form $(2^k + 1)^2 = 2^{2k} + 2^{k+1} + 1 = 10^{k-2} \cdot 10^k \cdot 1 \in L$, for any integer $k \ge 2$. The argument is somewhat simpler if we further restrict k to be even.

Let $F = 1(00)^*1$, and let x and y be arbitrary strings in F.

Then $x = 10^{2i-2}1$ and $y = 10^{2j-2}1$, for some positive integers $i \neq j$.

Without loss of generality, assume i < j. (Otherwise, swap x and y.)

Let
$$z = 0^{2i}1$$
.

Then $xz = 10^{2i-2}10^{2i}1$ is the binary representation of $2^{4i} + 2^{2i+1} + 1 = (2^{2i} + 1)^2$, and therefore $xz \in L$.

On the other hand, $yz = 10^{2j-2}10^{2i}1$ is the binary representation of $2^{2i+2j} + 2^{2i+1} + 1$. Simple algebra gives us the inequalities

$$(2^{i+j})^2 = 2^{2i+2j}$$

$$< 2^{2i+2j} + 2^{2i+1} + 1$$

$$< 2^{2(i+j)} + 2^{i+j+1} + 1$$

$$= (2^{i+j} + 1)^2.$$

So $2^{2i+2j} + 2^{2i+1} + 1$ lies between two consecutive perfect squares, and thus is not a perfect square, which implies that $yz \notin L$.

We conclude that F is a fooling set for L. Because F is infinite, L cannot be regular.