Prove that each of the following languages is \textit{not} regular.

1. \{0^{2n} \mid n \geq 0\}

Solution:
Let \(F = L = \{0^{2n} \mid n \geq 0\}\).
Let \(x\) and \(y\) be arbitrary elements of \(F\).
Then \(x = 0^{2^i}\) and \(y = 0^{2^j}\) for some non-negative integers \(x\) and \(y\).
Let \(z = 0^{2^i}\).
Then \(xz = 0^{2^i}0^{2^i} = 0^{2^{i+1}} \in L\).
And \(yz = 0^{2^j}0^{2^i} = 0^{2^{i+2^j}} \notin L\), because \(i \neq j\).
Thus, \(F\) is a fooling set for \(L\).
Because \(F\) is infinite, \(L\) cannot be regular.

2. \{0^{2n}1^n \mid n \geq 0\}

Solution:
For any non-negative integers \(i \neq j\), the strings \(0^{2^i}\) and \(0^{2^j}\) are distinguished by the suffix \(0^{2^i}\), because \(0^{2^i}0^{2^j} = 0^{2^{i+1}} \in L\) but \(0^{2^i}0^{2^j} = 0^{2^{i+2^j}} \notin L\). Thus \(L\) itself is an infinite fooling set for \(L\).

Solution:
Let \(F\) be the language \(0^*\).
Let \(x\) and \(y\) be arbitrary strings in \(F\).
Then \(x = 0^i\) and \(y = 0^j\) for some non-negative integers \(i \neq j\).
Let \(z = 0^{i}1^i\).
Then \(xz = 0^{2i}1^i \in L\).
And \(yz = 0^{i+j}1^i \notin L\), because \(i + j \neq 2i\).
Thus, \(F\) is a fooling set for \(L\).
Because \(F\) is infinite, \(L\) cannot be regular.

Solution:
For all non-negative integers \(i \neq j\), the strings \(0^i\) and \(0^j\) are distinguished by the suffix \(0^i1^i\), because \(0^{2i}1^i \in L\) but \(0^{i+j}1^i \notin L\). Thus, the language \(0^*\) is an infinite fooling set for \(L\).
Solution:
For all non-negative integers \(i \neq j \), the strings \(0^{2i} \) and \(0^{2j} \) are distinguished by the suffix \(1^i \), because \(0^{2i}1^i \in L \) but \(0^{2j}1^i \notin L \). Thus, the language \((00)^* \) is an infinite fooling set for \(L \).

3 \{0^m1^n \mid m \neq 2n\}

Solution:
Let \(F \) be the language \(0^* \).
Let \(x \) and \(y \) be arbitrary strings in \(F \).
Then \(x = 0^i \) and \(y = 0^j \) for some non-negative integers \(i \neq j \).
Let \(z = 0^i1^i \).
Then \(xz = 0^{2i}1^i \notin L \).
And \(yz = 0^{i+j}1^i \in L \), because \(i + j \neq 2i \).
Thus, \(F \) is a fooling set for \(L \).
Because \(F \) is infinite, \(L \) cannot be regular.

Solution:
For all non-negative integers \(i \neq j \), the strings \(0^{2i} \) and \(0^{2j} \) are distinguished by the suffix \(1^i \), because \(0^{2i}1^i \notin L \) but \(0^{2j}1^i \in L \). Thus, the language \((00)^* \) is an infinite fooling set for \(L \).

4 Strings over \{0,1\} where the number of 0s is exactly twice the number of 1s.

Solution:
Let \(F \) be the language \(0^* \).
Let \(x \) and \(y \) be arbitrary strings in \(F \).
Then \(x = 0^i \) and \(y = 0^j \) for some non-negative integers \(i \neq j \).
Let \(z = 0^i1^i \).
Then \(xz = 0^{2i}1^i \in L \).
And \(yz = 0^{i+j}1^i \notin L \), because \(i + j \neq 2i \).
Thus, \(F \) is a fooling set for \(L \).
Because \(F \) is infinite, \(L \) cannot be regular.

Solution:
For all non-negative integers \(i \neq j \), the strings \(0^{2i} \) and \(0^{2j} \) are distinguished by the suffix \(1^i \), because \(0^{2i}1^i \in L \) but \(0^{2j}1^i \notin L \). Thus, the language \((00)^* \) is an infinite fooling set for \(L \).
Solution:
If L were regular, then the language

$$(0 + 1)^* \setminus L \cap 0^*1^* = \{0^n1^n \mid m \neq 2n\}$$

would also be regular, because regular languages are closed under complement and intersection. But we just proved that $\{0^n1^n \mid m \neq 2n\}$ is not regular in problem 3. [Yes, this proof would be worth full credit, either in homework or on an exam.]

5 Strings of properly nested parentheses (), brackets [], and braces {}. For example, the string ([]){} is in this language, but the string ([)] is not, because the left and right delimiters don’t match.

Solution:
Let F be the language 0^*. Let x and y be arbitrary strings in F.
Then $x = (i)$ and $y = (j)$ for some non-negative integers $i \neq j$.
Let $z = #i$.
Then $xz = (i)^i \in L$.
And $yz = (i)^j \notin L$, because $i \neq j$.
Thus, F is a fooling set for L.
Because F is infinite, L cannot be regular.

Solution:
For any non-negative integers $i \neq j$, the strings (i) and (j) are distinguished by the suffix (i), because $(i)^i \in L$ but $(i)^j \notin L$. Thus, the language $(*)$ is an infinite fooling set.

6 Strings of the form $w_1\#w_2\#\cdots\#w_n$ for some $n \geq 2$, where each substring w_i is a string in $\{0,1\}^*$, and some pair of substrings w_i and w_j are equal.

Solution:
Let F be the language 0^*.
Let x and y be arbitrary strings in F.
Then $x = 0^i$ and $y = 0^j$ for some non-negative integers $i \neq j$.
Let $z = \#0^i$.
Then $xz = 0^i\#0^i \in L$.
And $yz = 0^j\#0^i \notin L$, because $i \neq j$.
Thus, F is a fooling set for L.
Because F is infinite, L cannot be regular.
Solution:
For any non-negative integers $i \neq j$, the strings 0^i and 0^j are distinguished by the suffix $\#0^i$, because $0^i \#0^j \in L$ but $0^j \#0^i \notin L$. Thus, the language $0^* \#0^* \notin L$. Thus, the language $\#0^*$ is an infinite fooling set.

Extra problems

7. \{0^{n^2} \mid n \geq 0\}

Solution:
Let x and y be distinct arbitrary strings in L. Without loss of generality, $x = 0^{i^2}$ and $y = 0^{j^2}$ for some $i > j \geq 0$.
Let $z = 0^{2i+1}$.
Then $xz = 0^{i^2+2+i+1} = 0^{(i+1)^2} \in L$.
On the other hand, $yz = 0^{i^2+2j+1} \notin L$, because $i^2 < i^2+2j+1 < (i+1)^2$.
Thus, z distinguishes x and y.
We conclude that L is an infinite fooling set for L, so L cannot be regular.

Solution:
Let x and y be distinct arbitrary strings in 0^*. Without loss of generality, $x = 0^i$ and $y = 0^j$ for some $i > j \geq 0$.
Let $z = 0^{i^2+i+1}$.
Then $xz = 0^{i^2+2+i+1} = 0^{(i+1)^2} \in L$.
On the other hand, $yz = 0^{i^2+i+j+1} \notin L$, because $i^2 < i^2+i+j+1 < (i+1)^2$.
Thus, z distinguishes x and y.
We conclude that 0^* is an infinite fooling set for L, so L cannot be regular.

Solution:
Let x and y be distinct arbitrary strings in 0000^*. Without loss of generality, $x = 0^i$ and $y = 0^j$ for some $i > j \geq 3$.
Let $z = 0^{i^2-i}$.
Then $xz = 0^{i^2} \in L$.
On the other hand, $yz = 0^{i^2-i+j} \notin L$, because
\[(i-1)^2 = i^2 - 2i + 1 < i^2 - i < i^2 - i + j < i^2. \]
(The first inequalities requires $i \geq 2$, and the second $j \geq 1$.)
Thus, z distinguishes x and y.
We conclude that 0000^* is an infinite fooling set for L, so L cannot be regular.
\{w \in (0 + 1)^* \mid w \text{ is the binary representation of a perfect square}\}

Solution:

We design our fooling set around numbers of the form \((2^k + 1)^2 = 2^{2k} + 2^{k+1} + 1 = 10^{k-2}10^k1 \in L\), for any integer \(k \geq 2\). The argument is somewhat simpler if we further restrict \(k\) to be even.

Let \(F = 1(00)^*1\), and let \(x\) and \(y\) be arbitrary strings in \(F\).

Then \(x = 10^{2i-2}1\) and \(y = 10^{2j-2}1\), for some positive integers \(i \neq j\).

Without loss of generality, assume \(i < j\). (Otherwise, swap \(x\) and \(y\).)

Let \(z = 0^{2i}1\).

Then \(xz = 10^{2i-2}10^{2i}1\) is the binary representation of \(2^{4i} + 2^{2i+1} + 1 = (2^{2i} + 1)^2\), and therefore \(xz \in L\).

On the other hand, \(yz = 10^{2j-2}10^{2i}1\) is the binary representation of \(2^{2i+2j} + 2^{2i+1} + 1\). Simple algebra gives us the inequalities

\[
(2^{i+j})^2 = 2^{2i+2j} < 2^{2i+2j} + 2^{2i+1} + 1 < 2^{2(i+j)} + 2^{i+j+1} + 1 = (2^{i+j} + 1)^2.
\]

So \(2^{2i+2j} + 2^{2i+1} + 1\) lies between two consecutive perfect squares, and thus is not a perfect square, which implies that \(yz \notin L\).

We conclude that \(F\) is a fooling set for \(L\). Because \(F\) is infinite, \(L\) cannot be regular.