Instructions: As in previous homeworks.

Problem 7.1:

(a) (8.5 points) We are given a DFA \(M = (Q, \Sigma, \delta, s, A) \) over the alphabet \(\Sigma = \{0, 1\} \) with \(m = |Q| \) states, and we are given a string \(x = a_1 \cdots a_n \) of length \(n \) \((a_i \in \{0, 1\})\). We want to find a string \(y = b_1 \cdots b_n \) of length \(n \) that is accepted by \(M \) and is “closest” to \(x \), in the sense of minimizing the distance \(d(x, y) = |\{i : a_i \neq b_i\}| \) (i.e., the number of differing bits).

Describe an efficient dynamic programming algorithm\(^1\) to solve this problem. The algorithm should output not only the minimum distance but also the closest string \(y \). Analyze the running time as a function of \(n \) and \(m \).

(b) (1.5 points) Describe how to modify your algorithm and analysis if the given automaton \(M \) is an NFA instead. You may assume that the given NFA does not have \(\varepsilon \)-transitions (since there are efficient algorithms to remove \(\varepsilon \)-transitions without increasing the number of states).

(Note: if the analysis is done carefully, the running time in (a) should be better than in (b).)

(Note: the analogous problem for regular expressions can similarly be solved, since regular expressions can be efficiently converted to NFAs.)

Problem 7.2: Given an unordered binary tree \(T \), a preorder traversal is a list (an ordering) of the nodes of \(T \) that can be obtained recursively by the following rules:

- If \(T \) has a single node \(r \), then the list \(\langle r \rangle \) is a preorder traversal.
- If \(T \) has root \(r \) and has subtrees \(T_1 \) and \(T_2 \) at \(r \)’s two children, and \(L_1 \) and \(L_2 \) are valid preorder traversals of \(T_1 \) and \(T_2 \) respectively, then \(\langle r \rangle \cdot L_1 \cdot L_2 \) and \(\langle r \rangle \cdot L_2 \cdot L_1 \) are both preorder traversals of \(T \). Here, \(\cdot \) denotes concatenation. (You may assume that all non-leaf nodes have degree 2.)

Let \(d(\cdot, \cdot) \) be a given distance function, which can be evaluated in constant time.

(a) (8.0 points) Given an unordered binary tree \(T \) with \(n \) nodes, we want to find a preorder traversal with the minimum cost. Here, the cost of \(\langle v_1, v_2, \ldots, v_n \rangle \) is defined to be \(d(v_1, v_2) + d(v_2, v_3) + \cdots + d(v_{n-1}, v_n) \).

Describe an efficient dynamic programming algorithm to compute the cost of an optimal traversal. Analyze its worst-case running time. (Note: a correct solution with \(O(n^2) \) running time gets full credit; \(O(n^3) \) gets a maximum of 6.0 points.)

\(^1\) See the general note from HW6 on what we expect in a dynamic programming solution.
(b) (2.0 points) Modify your algorithm and/or analysis to obtain a better running time in the special case when T is a balanced binary tree with $O(\log n)$ height.

For example: in the following tree, $\langle d, j, f, e, h, g, i, k, b, a, c \rangle$ and $\langle d, b, c, a, j, k, e, f, h, i, g \rangle$ are two preorder traversals (and there are many more).

\[
\begin{array}{c}
\text{b} \\
| \hspace{1cm} \text{d} \\
| \hspace{0.5cm} \text{a} \quad \text{e} \\
\text{f} \quad \text{h} \\
\text{g} \\
\text{i} \\
\text{k} \\
\text{j} \\
\text{c} \\
\end{array}
\]

Problem 7.3: The motivation behind this problem is how to divide a set of data points into a given number k of clusters.

Given a set P of n points in 2D, a binary space partition (BSP) is a binary tree where each node v stores a subset of points $P(v) \subseteq P$, and for every non-leaf node v with children v_1 and v_2, we have one of the following:

- $P(v_1) = \{ p \in P(v) \mid p.x \leq m \}$ and $P(v_2) = \{ p \in P(v) \mid p.x > m \}$ for some value m; or
- $P(v_1) = \{ p \in P(v) \mid p.y \leq m \}$ and $P(v_2) = \{ p \in P(v) \mid p.y > m \}$ for some value m.

In other words, $P(v)$ is split into two subsets $P(v_1)$ and $P(v_2)$ by cutting with either a vertical line $x = m$ or a horizontal line $y = m$. (Here, $p.x$ and $p.y$ denote the x- and y-coordinate of a point p respectively.) At the root r, we have $P(r) = P$.

For a set Q of points, define $c(Q) = (\max_{q \in Q} q.x - \min_{q \in Q} q.x) \cdot (\max_{q \in Q} q.y - \min_{q \in Q} q.y)$ (i.e., it is the area of the smallest axis-aligned rectangle containing Q).

Given a set P of n points in 2D and an integer k, we want to find a BSP with k leaves to minimize the cost function $\sum_{\text{leaf } v} c(P(v))$.

Describe (and analyze) an efficient dynamic programming algorithm to compute the cost of an optimal BSP for this problem.

An example of a (not necessarily optimal) BSP with $k = 8$ leaves is given below: