Instructions: As in previous homeworks.

Problem 3.1: For each of the following languages in parts (a), (b), and (c), describe an NFA that accepts the language, using as few states as you can. Provide a short explanation of your solution.

(a) all strings $x \in \{0,1\}^*$ such that the length $|x|$ is divisible by 7 or x does not contain 00000 as a substring.

(b) the language defined by the regular expression $((101 + 11)*(20)^2 + 122)*(1 + \varepsilon)$ (over the alphabet $\{0,1,2\}$).

(c) all strings $x \in \{0,1\}^*$ of length at least 4 such that the total number of 1’s among the first two symbols and the last two symbols in x is 2.
 (For example: 01110110 and 001011 are in the language, but 111001 is not, since 11 and 01 have a total of 3 1’s.)

(d) Convert your NFA from part (c) to a DFA by using the subset construction (i.e., power set construction). Don’t include unreachable states.

Problem 3.2: Given two languages L_1 and L_2 over the alphabet $\{0,1\}$, define

$$\text{insert}(L_1, L_2) = \{v_1u_1v_2u_2 \cdots u_kv_{k+1} : u_1, \ldots, u_k \in L_1, v_1, v_2, \ldots, v_{k+1} \in \{0,1\}^*, k \geq 0, \text{ such that } v_1v_2 \cdots v_{k+1} \in L_2\}.$$

Informally, a string is in $\text{insert}(L_1, L_2)$ if it can be obtained by taking a string v in L_2 and inserting (possibly multiple) strings from L_1 at various positions in v. (For example, if $L_1 = \{0\}$ and $L_2 = \{110\}$, then 0100010 $\in \text{insert}(L_1, L_2)$.)

Prove that if L_1 and L_2 are regular, then $\text{insert}(L_1, L_2)$ is regular.

[Hint: given regular expressions for L_1 and L_2, describe a recursive algorithm to produce a regular expression for $\text{insert}(L_1, L_2)$. Provide justification for your regular expression constructions. A formal proof of correctness is not required.]

Problem 3.3: For a string $x \in \{0,1\}^*$, let x^F denote the string obtained by changing all 0’s to 1’s and all 1’s to 0’s in x.

Given a language L over the alphabet $\{0,1\}$, define

$$\text{flip-substr}(L) = \{uv^Fw : uvw \in L, u, v, w \in \{0,1\}^*\}.$$

Prove that if L is regular, then $\text{flip-substr}(L)$ is regular.

(For example, $(1011)^F = 0100$. If $1011011 \in L$, then $1000111 = 10(110)^F11 \in \text{flip-substr}(L)$.

For another example, $\text{flip-substr}(0^*1^*) = 0^*1^*0^*1^*$.)
[Hint: given an NFA (or DFA) for \(L \), construct an NFA for \(\text{flip-substr}(L) \). Give a formal description of your construction. Provide an explanation of how your NFA works, including the meaning of each state. A formal proof of correctness is not required.]

Bonus (\(\frac{3}{10} \) points\(^1\)): Consider the modified language

\[
\text{flip-substr}(L) = \{uv^Rw : uvw \in L, u,v,w \in \{0,1\}^*\},
\]

were \(v^R \) denotes the reverse of \(v \). Prove that if \(L \) is regular, then \(\text{flip-substr}(L) \) is regular.

\(^1\) For bonus questions, no extra points (and no IDK!) unless your solution is very close to correct.