NFAs continued, Closure Properties of Regular Languages

Lecture 5
Tuesday, January 29, 2019
Theorem

Languages accepted by **DFA**s, **NFA**s, and regular expressions are the same.

- **DFA**s are special cases of **NFA**s (trivial)
- **NFA**s accept regular expressions (we saw already)
- **DFA**s accept languages accepted by **NFA**s (today)
- Regular expressions for languages accepted by **DFA**s (later in the course)
Regular Languages, DFAs, NFAs

Theorem

Languages accepted by **DFAs, NFAs, and regular expressions are the same.**

- **DFAs** are special cases of **NFAs** (trivial)
- **NFAs** accept regular expressions (we saw already)
- **DFAs** accept languages accepted by **NFAs** (today)
- Regular expressions for languages accepted by **DFAs** (later in the course)
Part I

Equivalence of NFAs and DFAs
Equivalence of NFAs and DFAs

Theorem

For every NFA N there is a DFA M such that $L(M) = L(N)$.
A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta : Q \times \Sigma \cup \{\epsilon\} \rightarrow \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

$\delta(q, a)$ for $a \in \Sigma \cup \{\epsilon\}$ is a subset of Q — a set of states.
Extending the transition function to strings

Definition

For NFA \(N = (Q, \Sigma, \delta, s, A) \) and \(q \in Q \) the \(\epsilon \text{reach}(q) \) is the set of all states that \(q \) can reach using only \(\epsilon \)-transitions.

Definition

Inductive definition of \(\delta^* : Q \times \Sigma^* \to \mathcal{P}(Q) \):

- if \(w = \epsilon \), \(\delta^*(q, \epsilon) = \epsilon \text{reach}(q) \)
- if \(w = a \) where \(a \in \Sigma \)
 \[\delta^*(q, a) = \bigcup_{p \in \epsilon \text{reach}(q)} \left(\bigcup_{r \in \delta(p, a)} \epsilon \text{reach}(r) \right) \]
- if \(w = xa \)
 \[\delta^*(q, w) = \bigcup_{p \in \delta^*(q,x)} \left(\bigcup_{r \in \delta(p, a)} \epsilon \text{reach}(r) \right) \]
Formal definition of language accepted by N

Definition

A string w is accepted by NFA N if $\delta^*_N(s, w) \cap A \neq \emptyset$.

Definition

The language $L(N)$ accepted by a NFA $N = (Q, \Sigma, \delta, s, A)$ is

$$\{ w \in \Sigma^* | \delta^*(s, w) \cap A \neq \emptyset \}.$$
Simulating an NFA by a DFA

- Think of a program with fixed memory that needs to simulate NFA N on input w.
- What does it need to store after seeing a prefix x of w?
- It needs to know at least $\delta^*(s, x)$, the set of states that N could be in after reading x
- Is it sufficient? Yes, if it can compute $\delta^*(s, xa)$ after seeing another symbol a in the input.
- When should the program accept a string w? If $\delta^*(s, w) \cap A \neq \emptyset$.

Key Observation: A DFA M that simulates N should keep in its memory/state the set of states of N

Thus the state space of the DFA should be $\mathcal{P}(Q)$.
Simulating an NFA by a DFA

- Think of a program with fixed memory that needs to simulate NFA N on input w.
- What does it need to store after seeing a prefix x of w?
- It needs to know at least $\delta^*(s, x)$, the set of states that N could be in after reading x
- Is it sufficient? Yes, if it can compute $\delta^*(s, xa)$ after seeing another symbol a in the input.
- When should the program accept a string w? If $\delta^*(s, w) \cap A \neq \emptyset$.

Key Observation: A DFA M that simulates N should keep in its memory/state the set of states of N

Thus the state space of the DFA should be $\mathcal{P}(Q)$.
Simulating an NFA by a DFA

- Think of a program with fixed memory that needs to simulate NFA N on input w.
- What does it need to store after seeing a prefix x of w?
- It needs to know at least $\delta^*(s, x)$, the set of states that N could be in after reading x.
- Is it sufficient? Yes, if it can compute $\delta^*(s, xa)$ after seeing another symbol a in the input.
- When should the program accept a string w? If $\delta^*(s, w) \cap A \neq \emptyset$.

Key Observation: A DFA M that simulates N should keep in its memory/state the set of states of N.

Thus the state space of the DFA should be $\mathcal{P}(Q)$.
Simulating an NFA by a DFA

- Think of a program with fixed memory that needs to simulate NFA N on input w.
- What does it need to store after seeing a prefix x of w?
- It needs to know at least $\delta^*(s, x)$, the set of states that N could be in after reading x.
- Is it sufficient? Yes, if it can compute $\delta^*(s, xa)$ after seeing another symbol a in the input.
- When should the program accept a string w? If $\delta^*(s, w) \cap A \neq \emptyset$.

Key Observation: A DFA M that simulates N should keep in its memory/state the set of states of N.

Thus the state space of the DFA should be $\mathcal{P}(Q)$.
Simulating NFA

Example the first revisited

Previous lecture.. Ran

NFA\(^{(N1)}\) on input \textit{ababa}.

\[
t = 0:
A \xrightarrow{a,b} B \xleftarrow{a,b} C \xrightarrow{a} D \xleftarrow{a} E
\]

\[
t = 1:
A \xrightarrow{a,b} B \xleftarrow{a,b} C \xrightarrow{a} D \xleftarrow{a} E
\]

\[
t = 2:
A \xrightarrow{a,b} B \xleftarrow{a,b} C \xrightarrow{a} D \xleftarrow{a} E
\]

\[
t = 3:
A \xrightarrow{a,b} B \xleftarrow{a,b} C \xrightarrow{a} D \xleftarrow{a} E
\]

\[
t = 4:
A \xrightarrow{a,b} B \xleftarrow{a,b} C \xrightarrow{a} D \xleftarrow{a} E
\]

\[
t = 5:
A \xrightarrow{a,b} B \xleftarrow{a,b} C \xrightarrow{a} D \xleftarrow{a} E
\]
Example: DFA from NFA

NFA: (N1)

DFA:

Chan, Har-Peled, Hassanieh (UIUC)
NFA $N = (Q, \Sigma, s, \delta, A)$. We create a DFA $M = (Q', \Sigma, \delta', s', A')$ as follows:

- $Q' = \mathcal{P}(Q)$
- $s' = \epsilon\text{reach}(s) = \delta^*(s, \epsilon)$
- $A' = \{X \subseteq Q \mid X \cap A \neq \emptyset\}$
- $\delta'(X, a) = \bigcup_{q \in X} \delta^*(q, a)$ for each $X \subseteq Q$, $a \in \Sigma$.

NFA $N = (Q, \Sigma, s, \delta, A)$. We create a DFA $M = (Q', \Sigma, \delta', s', A')$ as follows:

- $Q' = \mathcal{P}(Q)$
- $s' = \epsilon\text{reach}(s) = \delta^*(s, \epsilon)$
- $A' = \{X \subseteq Q \mid X \cap A \neq \emptyset\}$
- $\delta'(X, a) = \bigcup_{q \in X} \delta^*(q, a)$ for each $X \subseteq Q$, $a \in \Sigma$.
Subset Construction

NFA \(N = (Q, \Sigma, s, \delta, A) \). We create a DFA \(M = (Q', \Sigma, \delta', s', A') \) as follows:

- \(Q' = \mathcal{P}(Q) \)
- \(s' = \epsilon \text{reach}(s) = \delta^*(s, \epsilon) \)
- \(A' = \{X \subseteq Q \mid X \cap A \neq \emptyset\} \)
- \(\delta'(X, a) = \bigcup_{q \in X} \delta^*(q, a) \) for each \(X \subseteq Q, a \in \Sigma \).
NFA $N = (Q, \Sigma, s, \delta, A)$. We create a DFA $M = (Q', \Sigma, \delta', s', A')$ as follows:

- $Q' = \mathcal{P}(Q)$
- $s' = \epsilon\text{reach}(s) = \delta^*(s, \epsilon)$
- $A' = \{X \subseteq Q \mid X \cap A \neq \emptyset\}$
- $\delta'(X, a) = \bigcup_{q \in X} \delta^*(q, a)$ for each $X \subseteq Q$, $a \in \Sigma$.

Example

No ϵ-transitions

$q_0 \xrightarrow{1} q_1$

$q_0 \xrightarrow{0, 1} q_1$

$q_0 \xrightarrow{0, 1} q_1$

$q_0 \xrightarrow{0, 1} q_1$
Example

No ϵ-transitions

[Diagram of NFA and DFA with states and transitions]

An example NFA is shown in Figure 4 along with the DFA $\text{det}(N)$ in Figure 5.

We will now prove that the DFA defined above is correct. That is

Lemma 4. $L(N) = L(\text{det}(N))$

Proof. Need to show $\forall w \in \Sigma^\ast$. $\text{det}(N)$ accepts w iff N accepts w.

Again for the induction proof to go through we need to strengthen the claim as follows.

$\forall w \in \Sigma^\ast$. $\text{det}(N)(s_0, w)$ is exactly the set of states N could be in after reading w.

The proof of the strengthened statement is by induction on $|w|$.

Base Case If $|w| = 0$ then $w = \varepsilon$. Now $\text{det}(N)(s_0, \varepsilon) = s_0 = \varepsilon$ by the definition of $\text{det}(N)$ and the definition of s_0.

In other words, this says that the state of the DFA after reading some string is exactly the set of states the NFA could be in after reading the same string.
Incremental construction

Only build states reachable from $s' = \epsilon \text{reach}(s)$ the start state of M

$$\delta'(X, a) = \bigcup_{q \in X} \delta^*(q, a)$$
Incremental algorithm

- Build M beginning with start state $s' == \epsilon \text{reach}(s)$
- For each existing state $X \subseteq Q$ consider each $a \in \Sigma$ and calculate the state $Y = \delta'(X, a) = \bigcup_{q \in X} \delta^*(q, a)$ and add a transition.
- If Y is a new state add it to reachable states that need to explored.

To compute $\delta^*(q, a)$ - set of all states reached from q on string a

- Compute $X = \epsilon \text{reach}(q)$
- Compute $Y = \bigcup_{p \in X} \delta(p, a)$
- Compute $Z = \epsilon \text{reach}(Y) = \bigcup_{r \in Y} \epsilon \text{reach}(r)$
Proof of Correctness

Theorem

Let $N = (Q, \Sigma, s, \delta, A)$ be a NFA and let $M = (Q', \Sigma, \delta', s', A')$ be a DFA constructed from N via the subset construction. Then $L(N) = L(M)$.

Stronger claim:

Lemma

For every string w, $\delta^*_N(s, w) = \delta^*_M(s', w)$.

Proof by induction on $|w|$.

Base case: $w = \epsilon$.

$\delta^*_N(s, \epsilon) = \epsilon\text{reach}(s)$.

$\delta^*_M(s', \epsilon) = s' = \epsilon\text{reach}(s)$ by definition of s'.
Proof of Correctness

Theorem

Let $N = (Q, \Sigma, s, \delta, A)$ be a NFA and let $M = (Q', \Sigma, \delta', s', A')$ be a DFA constructed from N via the subset construction. Then $L(N) = L(M)$.

Stronger claim:

Lemma

For every string w, $\delta^*_N(s, w) = \delta^*_M(s', w)$.

Proof by induction on $|w|$.

Base case: $w = \epsilon$.

$\delta^*_N(s, \epsilon) = \epsilon \text{reach}(s)$.

$\delta^*_M(s', \epsilon) = s' = \epsilon \text{reach}(s)$ by definition of s'.
Proof continued

Lemma

For every string w, $\delta^*(s, w) = \delta^*(s', w)$.

Inductive step: $w = xa$ (Note: suffix definition of strings)

$\delta^*(s, xa) = \bigcup_{p \in \delta^*(s, x)} \delta^*(p, a)$ by inductive definition of δ^*_N

$\delta^*(s', xa) = \delta_M(\delta^*_M(s, x), a)$ by inductive definition of δ^*_M

By inductive hypothesis: $Y = \delta^*_N(s, x) = \delta^*_M(s, x)$

Thus $\delta^*(s, xa) = \bigcup_{p \in Y} \delta^*_N(p, a) = \delta_M(Y, a)$ by definition of δ_M.

Therefore,

$\delta^*_N(s, xa) = \delta_M(Y, a) = \delta_M(\delta^*_M(s, x), a) = \delta^*_M(s', xa)$

which is what we need.
Lemma

For every string \(w \), \(\delta^*_N(s, w) = \delta^*_M(s', w) \).

Inductive step: \(w = xa \) (Note: suffix definition of strings)

\[
\delta^*_N(s, xa) = \bigcup_{p \in \delta^*_N(s, x)} \delta^*_N(p, a)
\]

by inductive definition of \(\delta^*_N \)

\[
\delta^*_M(s', xa) = \delta_M(\delta^*_M(s, x), a)
\]

by inductive definition of \(\delta^*_M \)

By inductive hypothesis: \(Y = \delta^*_N(s, x) = \delta^*_M(s, x) \)

Thus \(\delta^*_N(s, xa) = \bigcup_{p \in Y} \delta^*_N(p, a) = \delta_M(Y, a) \) by definition of \(\delta_M \).

Therefore,

\[
\delta^*_N(s, xa) = \delta_M(Y, a) = \delta_M(\delta^*_M(s, x), a) = \delta^*_M(s', xa)
\]

which is what we need.
Lemma

For every string \(w \), \(\delta^*_N(s, w) = \delta^*_M(s', w) \).

Inductive step: \(w = xa \)
\[
\delta^*_N(s, xa) = \bigcup_{p \in \delta^*_N(s, x)} \delta^*_N(p, a) \quad \text{by inductive definition of} \quad \delta^*_N
\]
\[
\delta^*_M(s', xa) = \delta_M(\delta^*_M(s, x), a) \quad \text{by inductive definition of} \quad \delta^*_M
\]

By inductive hypothesis: \(Y = \delta^*_N(s, x) = \delta^*_M(s, x) \)

Thus \(\delta^*_N(s, xa) = \bigcup_{p \in Y} \delta^*_N(p, a) = \delta_M(Y, a) \) by definition of \(\delta_M \).

Therefore,
\[
\delta^*_N(s, xa) = \delta_M(Y, a) = \delta_M(\delta^*_M(s, x), a) = \delta^*_M(s', xa)
\]
which is what we need.
Lemma

For every string \(w \), \(\delta^*_N(s, w) = \delta^*_M(s', w) \).

Inductive step: \(w = xa \) (Note: suffix definition of strings)

\[
\delta^*_N(s, xa) = \bigcup_{p \in \delta^*_N(s, x)} \delta^*_N(p, a)
\]

by inductive definition of \(\delta^*_N \)

\[
\delta^*_M(s', xa) = \delta_M(\delta^*_M(s, x), a)
\]

by inductive definition of \(\delta^*_M \)

By inductive hypothesis:

\[
Y = \delta^*_N(s, x) = \delta^*_M(s, x)
\]

Thus

\[
\delta^*_N(s, xa) = \bigcup_{p \in Y} \delta^*_N(p, a) = \delta_M(Y, a)
\]

by definition of \(\delta_M \).

Therefore,

\[
\delta^*_N(s, xa) = \delta_M(Y, a) = \delta_M(\delta^*_M(s, x), a) = \delta^*_M(s', xa)
\]

which is what we need.
Proof continued

Lemma

For every string w, $\delta^*_N(s, w) = \delta^*_M(s', w)$.

Inductive step: $w = xa$ (Note: suffix definition of strings)

$\delta^*_N(s, xa) = \bigcup_{p \in \delta^*_N(s, x)} \delta^*_N(p, a)$ by inductive definition of δ^*_N

$\delta^*_M(s', xa) = \delta_M(\delta^*_M(s, x), a)$ by inductive definition of δ^*_M

By inductive hypothesis: $Y = \delta^*_N(s, x) = \delta^*_M(s, x)$

Thus $\delta^*_N(s, xa) = \bigcup_{p \in Y} \delta^*_N(p, a) = \delta_M(Y, a)$ by definition of δ_M.

Therefore,

$\delta^*_N(s, xa) = \delta_M(Y, a) = \delta_M(\delta^*_M(s, x), a) = \delta^*_M(s', xa)$

which is what we need.
Part II

Closure Properties of Regular Languages
Regular Languages

Regular languages have three different characterizations

- Inductive definition via base cases and closure under union, concatenation and Kleene star
- Languages accepted by DFAs
- Languages accepted by NFAs

Regular language closed under many operations:

- union, concatenation, Kleene star via inductive definition or NFAs
- complement, union, intersection via DFAs
- homomorphism, inverse homomorphism, reverse, . . .

Different representations allow for flexibility in proofs
Regular Languages

Regular languages have three different characterizations

- Inductive definition via base cases and closure under union, concatenation and Kleene star
- Languages accepted by DFA
- Languages accepted by NFA

Regular language closed under many operations:

- union, concatenation, Kleene star via inductive definition or NFA
- complement, union, intersection via DFA
- homomorphism, inverse homomorphism, reverse, ...

Different representations allow for flexibility in proofs
Example: **PREFIX**

Let L be a language over Σ.

Definition

$$\text{PREFIX}(L) = \{w \mid wx \in L, x \in \Sigma^*\}$$

Theorem

If L is regular then $\text{PREFIX}(L)$ is regular.

Let $M = (Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L

$X = \{q \in Q \mid s \text{ can reach } q \text{ in } M\}$

$Y = \{q \in Q \mid q \text{ can reach some state in } A\}$

$Z = X \cap Y$

Create new DFA $M' = (Q, \Sigma, \delta, s, Z)$

Claim: $L(M') = \text{PREFIX}(L)$.
Example: PREFIX

Let \(L \) be a language over \(\Sigma \).

Definition

\[
\text{PREFIX}(L) = \{ w \mid wx \in L, x \in \Sigma^* \}
\]

Theorem

If \(L \) is regular then \(\text{PREFIX}(L) \) is regular.

Let \(M = (Q, \Sigma, \delta, s, A) \) be a DFA that recognizes \(L \)

\[
X = \{ q \in Q \mid s \text{ can reach } q \text{ in } M \}
\]

\[
Y = \{ q \in Q \mid q \text{ can reach some state in } A \}
\]

\[
Z = X \cap Y
\]

Create new DFA \(M' = (Q, \Sigma, \delta, s, Z) \)

Claim: \(L(M') = \text{PREFIX}(L) \).
Example: PREFIX

Let L be a language over Σ.

Definition

$\text{PREFIX}(L) = \{w \mid wx \in L, x \in \Sigma^*\}$

Theorem

If L *is regular then* $\text{PREFIX}(L)$ *is regular.*

Let $M = (Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L

$X = \{q \in Q \mid s \text{ can reach } q \text{ in } M\}$

$Y = \{q \in Q \mid q \text{ can reach some state in } A\}$

$Z = X \cap Y$

Create new DFA $M' = (Q, \Sigma, \delta, s, Z)$

Claim: $L(M') = \text{PREFIX}(L)$.
Example: PREFIX

Let \(L \) be a language over \(\Sigma \).

Definition

\[
\text{PREFIX}(L) = \{ w \mid wx \in L, x \in \Sigma^* \}
\]

Theorem

If \(L \) is regular then \(\text{PREFIX}(L) \) is regular.

Let \(M = (Q, \Sigma, \delta, s, A) \) be a **DFA** that recognizes \(L \)

\[X = \{ q \in Q \mid s \text{ can reach } q \text{ in } M \} \]

\[Y = \{ q \in Q \mid q \text{ can reach some state in } A \} \]

\[Z = X \cap Y \]

Create new **DFA** \(M' = (Q, \Sigma, \delta, s, Z) \)

Claim: \(L(M') = \text{PREFIX}(L) \).
Example: PREFIX

Let L be a language over Σ.

Definition

$\text{PREFIX}(L) = \{w \mid wx \in L, x \in \Sigma^*\}$

Theorem

If L is regular then $\text{PREFIX}(L)$ is regular.

Let $M = (Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L.

$X = \{q \in Q \mid s \text{ can reach } q \text{ in } M\}$

$Y = \{q \in Q \mid q \text{ can reach some state in } A\}$

$Z = X \cap Y$

Create new DFA $M' = (Q, \Sigma, \delta, s, Z)$

Claim: $L(M') = \text{PREFIX}(L)$.
Example: PREFIX

Let L be a language over Σ.

Definition

$\text{PREFIX}(L) = \{ w \mid wx \in L, x \in \Sigma^* \}$

Theorem

If L is regular then $\text{PREFIX}(L)$ is regular.

Let $M = (Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L

$X = \{ q \in Q \mid s \text{ can reach } q \text{ in } M \}$

$Y = \{ q \in Q \mid q \text{ can reach some state in } A \}$

$Z = X \cap Y$

Create new DFA $M' = (Q, \Sigma, \delta, s, Z)$

Claim: $L(M') = \text{PREFIX}(L)$.
Example: PREFIX

Let L be a language over Σ.

Definition

$\text{PREFIX}(L) = \{w | wx \in L, x \in \Sigma^*\}$

Theorem

If L is regular then $\text{PREFIX}(L)$ is regular.

Let $M = (Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L.

$X = \{q \in Q | s \text{ can reach } q \text{ in } M\}$

$Y = \{q \in Q | q \text{ can reach some state in } A\}$

$Z = X \cap Y$

Create new DFA $M' = (Q, \Sigma, \delta, s, Z)$

Claim: $L(M') = \text{PREFIX}(L)$.
Exercise: SUFFIX

Let L be a language over Σ.

Definition

$$\text{SUFFIX}(L) = \{w \mid xw \in L, x \in \Sigma^*\}$$

Prove the following:

Theorem

If L is regular then $\text{PREFIX}(L)$ is regular.
Part III

Regex to NFA
Stage 0: Input
Stage 1: Normalizing

2: Normalizing it.
Stage 2: Remove state A

\[
\begin{array}{c}
\text{init} \xrightarrow{\varepsilon} A \xrightarrow{a} B \\
A \xrightarrow{b} C \xrightarrow{a} \varepsilon \xrightarrow{b} \varepsilon \xrightarrow{b} \varepsilon \xrightarrow{a+b} \AC
\end{array}
\]
Stage 4: Redrawn without old edges

- init → B
- B → C
- C → AC
- AC → init
- a → B
- b → B
- b → C
- a → C
- ε → AC
- a + b → C
Stage 4: Removing B

\[
\begin{align*}
\text{init} & \rightarrow a \quad \text{B} \\
b & \quad \text{AC} \\
\epsilon & \quad a + b \\
\text{init} & \rightarrow a \quad \text{B} \\
b & \quad \text{AC} \\
\epsilon & \quad a + b \\
\end{align*}
\]
Stage 5: Redraw

\[\text{init} \rightarrow \begin{array}{c}
\text{C} \quad \epsilon \\
\text{AC} \quad \text{a + b}
\end{array} \]

\[\text{ab^*a + b} \]

Chan, Har-Peled, Hassanieh (UIUC)
Stage 6: Removing C

\[(ab^*a + b)(a + b)^* \epsilon \]
Stage 7: Redraw

\[(ab^*a + b)(a + b)^*\]
Stage 8: Extract regular expression

Thus, this automata is equivalent to the regular expression

$$(ab^*a + b)(a + b)^*.$$