Non-deterministic Finite Automata (NFAs)

Lecture 4
Thursday, January 24, 2019
Part I

NFA Introduction
Non-deterministic Finite State Automata (NFAs)

Differences from DFA
- From state q on same letter $a \in \Sigma$ multiple possible states
- No transitions from q on some letters
- ε-transitions!

Questions:
- Is this a “real” machine?
- What does it do?
Non-deterministic Finite State Automata (NFAs)

Differences from DFA
- From state q on same letter $a \in \Sigma$ multiple possible states
- No transitions from q on some letters
- ε-transitions!

Questions:
- Is this a “real” machine?
- What does it do?
Non-deterministic Finite State Automata (NFAs)

Differences from DFA
- From state q on same letter $a \in \Sigma$ multiple possible states
- No transitions from q on some letters
- ϵ-transitions!

Questions:
- Is this a “real” machine?
- What does it do?
NFA behavior

Machine on input string w from state q can lead to set of states (could be empty)

- From q_ε on 1
- From q_ε on 0
- From q_0 on ε
- From q_ε on 01
- From q_{00} on 00
Machine on input string w from state q can lead to set of states (could be empty)

- From q_{ϵ} on 1
- From q_{ϵ} on 0
- From q_0 on ϵ
- From q_{ϵ} on 01
- From q_{00} on 00
NFA behavior

Machine on input string w from state q can lead to set of states (could be empty)

- From q_ε on 1
- From q_ε on 0
- From q_0 on ε
- From q_ε on 01
- From q_{00} on 00
Machine on input string w from state q can lead to set of states (could be empty):

- From q_ϵ on 1
- From q_ϵ on 0
- From q_0 on ϵ
- From q_ϵ on 01
- From q_{00} on 00
Machine on input string w from state q can lead to set of states (could be empty)

- From q_ε on 1
- From q_ε on 0
- From q_0 on ε
- From q_ε on 01
- From q_{00} on 00
NFA behavior

Machine on input string w from state q can lead to set of states (could be empty)

- From q_ε on 1
- From q_ε on 0
- From q_0 on ε
- From q_ε on 01
- From q_{00} on 00
Informal definition: An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.

The language accepted (or recognized) by a NFA N is denote by $L(N)$ and defined as: $L(N) = \{w \mid N \text{ accepts } w\}$.
Informal definition: An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.

The language accepted (or recognized) by a NFA N is denote by $L(N)$ and defined as: $L(N) = \{ w \mid N$ accepts $w \}$.
NFA acceptance: example

- Is 01 accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in 1*01 accepted?
- What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is not accepted.
NFA acceptance: example

- Is 01 accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in 1^*01 accepted?
- What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is not accepted.
Is 01 accepted?
Is 001 accepted?
Is 100 accepted?
Are all strings in 1*01 accepted?
What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is not accepted.
NFA acceptance: example

Is 01 accepted?
Is 001 accepted?
Is 100 accepted?
Are all strings in 1*01 accepted?

What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is not accepted.
Is 01 accepted?
Is 001 accepted?
Is 100 accepted?
Are all strings in 1*01 accepted?
What is the language accepted by \(N \)?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is not accepted.
NFA acceptance: example

Is 01 accepted?
Is 001 accepted?
Is 100 accepted?
Are all strings in 1*01 accepted?
What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is not accepted.
NFA acceptance: example

- Is 01 accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in 1*01 accepted?
- What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is not accepted.
Run it on input \textit{ababa}.

Idea: Keep track of the states where the NFA might be at any given time.
Simulating NFA

Example the first

$t = 0$:

Remaining input: \textit{ababa}.
Simulating NFA

Example the first

$t = 0$:

Remaining input: $ababa$.

$t = 1$:

Remaining input: $baba$.
Simulating NFA

Example the first

$t = 1$:

Remaining input: $baba$.

\[
\begin{array}{c}
A \xrightarrow{a,b} B \xrightarrow{a} C \xrightarrow{a} D \xrightarrow{b} E
\end{array}
\]
Simulating NFA

Example the first

$t = 1$:

Remaining input: $baba$.

$t = 2$:

Remaining input: aba.

Chan, Har-Peled, Hassanieh (UIUC) CS374 Spring 2019 7/39
Simulating NFA

Example the first

$t = 2$:

Remaining input: aba.
Simulating NFA

Example the first

$t = 2$:

Remaining input: \textit{aba}.

$t = 3$:

Remaining input: \textit{ba}.
Simulating NFA

Example the first

$t = 3$:

\[\begin{array}{c}
A \xrightarrow{a} B \xrightarrow{b} C \xrightarrow{a} D \xrightarrow{b} E \\
\end{array} \]

Remaining input: \textit{ba}.
Simulating NFA

Example the first

$t = 3$:

Remaining input: ba.

$t = 4$:

Remaining input: a.
Simulating NFA

Example the first

$t = 4$:

Remaining input: a.
Simulating NFA

Example the first

$t = 4$:

Remaining input: a.

$t = 5$:

Remaining input: ε.
Simulating NFA

Example the first

$t = 5$:

Remaining input: ε.

Accepts: $ababa$.
Formal Tuple Notation

Definition

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta : Q \times \Sigma \cup \{\varepsilon\} \rightarrow \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

$\delta(q, a)$ for $a \in \Sigma \cup \{\varepsilon\}$ is a subset of Q — a set of states.
Reminder: Power set

For a set Q its power set is: $\mathcal{P}(Q) = 2^Q = \{ X \mid X \subseteq Q \}$ is the set of all subsets of Q.

Example

$Q = \{1, 2, 3, 4\}$

$\mathcal{P}(Q) = \{ \{1, 2, 3, 4\}, \{2, 3, 4\}, \{1, 3, 4\}, \{1, 2, 4\}, \{1, 2, 3\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \{1\}, \{2\}, \{3\}, \{4\}, \{\} \}$
\[Q = \{ q_\varepsilon, q_0, q_{00}, q_p \} \]
\[\Sigma = \{ 0, 1 \} \]
\[\delta \]
\[s = q_\varepsilon \]
\[A = \{ q_p \} \]
Example

- $Q = \{q_\varepsilon, q_0, q_{00}, q_p\}$
- $\Sigma = \{0, 1\}$
- $s = q_\varepsilon$
- $A = \{q_p\}$
Example

Q = \{q_\varepsilon, q_0, q_{00}, q_p\}

\(\Sigma = \{0, 1\}\)

\(s = q_\varepsilon\)

A = \{q_p\}
Example

\[Q = \{ q_\epsilon, q_0, q_{00}, q_p \} \]

\[\Sigma = \{0, 1\} \]

\[\delta \]

\[s = q_\epsilon \]

\[A = \{ q_p \} \]
Example

- $Q = \{q_\varepsilon, q_0, q_{00}, q_p\}$
- $\Sigma = \{0, 1\}$
- δ
- $s = q_\varepsilon$
- $A = \{q_p\}$
Example

- \(Q = \{q_\varepsilon, q_0, q_{00}, q_p\} \)
- \(\Sigma = \{0, 1\} \)
- \(\delta \)
- \(s = q_\varepsilon \)
- \(A = \{q_p\} \)
Example

\[Q = \{q_\varepsilon, q_0, q_{00}, q_p\} \]

\[\Sigma = \{0, 1\} \]

\[\delta \]

\[s = q_\varepsilon \]

\[A = \{q_p\} \]
Example

- \(Q = \{ q_\epsilon, q_0, q_{00}, q_p \} \)
- \(\Sigma = \{ 0, 1 \} \)
- \(\delta \)
- \(s = q_\epsilon \)
- \(A = \{ q_p \} \)
Example

- $Q = \{q_\varepsilon, q_0, q_{00}, q_p\}$
- $\Sigma = \{0, 1\}$
- δ
- $s = q_\varepsilon$
- $A = \{q_p\}$
Example

Transition function in detail...

\[
\delta(q_\varepsilon, \varepsilon) = \{ q_\varepsilon \}
\]
\[
\delta(q_\varepsilon, 0) = \{ q_\varepsilon, q_0 \}
\]
\[
\delta(q_\varepsilon, 1) = \{ q_\varepsilon \}
\]
\[
\delta(q_{00}, \varepsilon) = \{ q_{00} \}
\]
\[
\delta(q_{00}, 0) = \{ \}
\]
\[
\delta(q_{00}, 1) = \{ q_p \}
\]

\[
\delta(q_0, \varepsilon) = \{ q_0, q_{00} \}
\]
\[
\delta(q_0, 0) = \{ q_{00} \}
\]
\[
\delta(q_0, 1) = \{ \}
\]

\[
\delta(q_{p}, \varepsilon) = \{ q_p \}
\]
\[
\delta(q_{p}, 0) = \{ q_p \}
\]
\[
\delta(q_{p}, 1) = \{ q_p \}
\]
Extending the transition function to strings

1. NFA \(N = (Q, \Sigma, \delta, s, A) \)
2. \(\delta(q, a) \): set of states that \(N \) can go to from \(q \) on reading \(a \in \Sigma \cup \{\varepsilon\} \).
3. Want transition function \(\delta^* : Q \times \Sigma^* \rightarrow \mathcal{P}(Q) \)
4. \(\delta^*(q, w) \): set of states reachable on input \(w \) starting in state \(q \).
Extending the transition function to strings

1. **NFA** $N = (Q, \Sigma, \delta, s, A)$

2. $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.

3. Want transition function $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$

4. $\delta^*(q, w)$: set of states reachable on input w starting in state q.

Chan, Har-Peled, Hassanieh (UIUC)
Extending the transition function to strings

1. NFA $N = (Q, \Sigma, \delta, s, A)$
2. $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.
3. Want transition function $\delta^* : Q \times \Sigma^* \rightarrow \mathcal{P}(Q)$
4. $\delta^*(q, w)$: set of states reachable on input w starting in state q.
Extending the transition function to strings

1. **NFA** \(N = (Q, \Sigma, \delta, s, A) \)

2. \(\delta(q, a) \): set of states that \(N \) can go to from \(q \) on reading \(a \in \Sigma \cup \{\varepsilon\} \).

3. Want transition function \(\delta^* : Q \times \Sigma^* \rightarrow \mathcal{P}(Q) \)

4. \(\delta^*(q, w) \): set of states reachable on input \(w \) starting in state \(q \).
Extending the transition function to strings

Definition

For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the $\epsilon\text{reach}(q)$ is the set of all states that q can reach using only ϵ-transitions.
Extending the transition function to strings

Definition
For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the εreach(q) is the set of all states that q can reach using only ε-transitions.

Definition
Inductive definition of $\delta^* : Q \times \Sigma^* \rightarrow \mathcal{P}(Q)$:
- if $w = \varepsilon$, $\delta^*(q, w) = \varepsilon$reach$(q)$
- if $w = a$ where $a \in \Sigma$
 $\delta^*(q, a) = \bigcup_{p \in \varepsilon$reach$(q)} \big(\bigcup_{r \in \delta(p,a)} \varepsilon$reach$(r) \big)$
- if $w = ax$
 $\delta^*(q, w) = \bigcup_{p \in \varepsilon$reach$(q)} \big(\bigcup_{r \in \delta(p,a)} \delta^*(r, x) \big)$
Extending the transition function to strings

Definition

For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the ϵ-reach(q) is the set of all states that q can reach using only ϵ-transitions.

Definition

Inductive definition of $\delta^* : Q \times \Sigma^* \rightarrow \mathcal{P}(Q)$:

- If $w = \epsilon$, $\delta^*(q, w) = \epsilon$-reach($q$)
- If $w = a$ where $a \in \Sigma$

 $$\delta^*(q, a) = \bigcup_{p \in \epsilon$-reach($q$)} \left(\bigcup_{r \in \delta(p, a)} \epsilon$-reach($r$) \right)$$
- If $w = ax$,

 $$\delta^*(q, w) = \bigcup_{p \in \epsilon$-reach($q$)} \left(\bigcup_{r \in \delta(p, a)} \delta^*(r, x) \right)$$
Extending the transition function to strings

Definition
For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the ϵ-reach(q) is the set of all states that q can reach using only ϵ-transitions.

Definition
Inductive definition of $\delta^* : Q \times \Sigma^* \rightarrow \mathcal{P}(Q)$:
- if $w = \epsilon$, $\delta^*(q, w) = \epsilon$-reach($q$)
- if $w = a$ where $a \in \Sigma$
 $\delta^*(q, a) = \bigcup_{p \in \epsilon$-reach($q$)} \left(\bigcup_{r \in \delta(p, a) \epsilon$-reach($r$)} \right)$
- if $w = ax$, $\delta^*(q, w) = \bigcup_{p \in \epsilon$-reach($q$)} \left(\bigcup_{r \in \delta(p, a) \delta^*(r, x)} \right)$
Formal definition of language accepted by \mathcal{N}

Definition

A string w is accepted by NFA \mathcal{N} if $\delta^*_\mathcal{N}(s, w) \cap A \neq \emptyset$.

Definition

The language $L(\mathcal{N})$ accepted by a NFA $\mathcal{N} = (Q, \Sigma, \delta, s, A)$ is

$$\{ w \in \Sigma^* \mid \delta^*(s, w) \cap A \neq \emptyset \}.$$

Important: Formal definition of the language of NFA above uses δ^* and not δ. As such, one does not need to include ε-transitions closure when specifying δ, since δ^* takes care of that.
Formal definition of language accepted by N

Definition
A string w is accepted by NFA N if $\delta^*_N(s, w) \cap A \neq \emptyset$.

Definition
The language $L(N)$ accepted by a NFA $N = (Q, \Sigma, \delta, s, A)$ is

$$\{ w \in \Sigma^* \mid \delta^*(s, w) \cap A \neq \emptyset \}.$$

Important: Formal definition of the language of NFA above uses δ^* and not δ. As such, one does not need to include ε-transitions closure when specifying δ, since δ^* takes care of that.
What is:

- $\delta^*(s, \epsilon)$
- $\delta^*(s, 0)$
- $\delta^*(c, 0)$
- $\delta^*(b, 00)$
What is:

- $\delta^*(s, \epsilon)$
- $\delta^*(s, 0)$
- $\delta^*(c, 0)$
- $\delta^*(b, 00)$
Example

What is:

- \(\delta^*(s, \epsilon) \)
- \(\delta^*(s, 0) \)
- \(\delta^*(c, 0) \)
- \(\delta^*(b, 00) \)
What is:

- $\delta^*(s, \epsilon)$
- $\delta^*(s, 0)$
- $\delta^*(c, 0)$
- $\delta^*(b, 00)$
Another definition of computation

Definition

$q \xrightarrow{w}_N p$: State p of NFA N is **reachable** from q on w if there exists a sequence of states r_0, r_1, \ldots, r_k and a sequence x_1, x_2, \ldots, x_k where $x_i \in \Sigma \cup \{\varepsilon\}$, for each i, such that:

- $r_0 = q$,
- for each i, $r_{i+1} \in \delta(r_i, x_{i+1})$,
- $r_k = p$, and
- $w = x_1 x_2 x_3 \cdots x_k$.

Definition

$\delta^* N(q, w) = \left\{ p \in Q \mid q \xrightarrow{w}_N p \right\}$.
Why non-determinism?

- Non-determinism adds power to the model; richer programming language and hence (much) easier to “design” programs
- Fundamental in theory to prove many theorems
- Very important in practice directly and indirectly
- Many deep connections to various fields in Computer Science and Mathematics

Many interpretations of non-determinism. Hard to understand at the outset. Get used to it and then you will appreciate it slowly.
Part II

Constructing NFAs
DFAs and NFAs

- Every **DFA** is a **NFA** so **NFAs** are at least as powerful as **DFAs**.
- **NFAs** prove ability to “guess and verify” which simplifies design and reduces number of states.
- Easy proofs of some closure properties.
Example

Strings that represent decimal numbers.
Strings that represent decimal numbers.
Example

- \{\text{strings that contain CS374 as a substring}\}
- \{\text{strings that contain CS374 or CS473 as a substring}\}
- \{\text{strings that contain CS374 and CS473 as substrings}\}
Example

- \{\text{strings that contain CS374 as a substring}\}
- \{\text{strings that contain CS374 or CS473 as a substring}\}
- \{\text{strings that contain CS374 and CS473 as substrings}\}
Example

- \{\text{strings that contain CS374 as a substring}\}
- \{\text{strings that contain CS374 or CS473 as a substring}\}
- \{\text{strings that contain CS374 and CS473 as substrings}\}
$L_k = \{\text{bitstrings that have a 1 \(k\) positions from the end}\}$
A simple transformation

Theorem

For every NFA N there is another NFA N' such that $L(N) = L(N')$ and such that N' has the following two properties:

- N' has single final state f that has no outgoing transitions
- The start state s of N is different from f
Part III

Closure Properties of NFAs
Closure properties of NFAs

Are the class of languages accepted by NFAs closed under the following operations?

- union
- intersection
- concatenation
- Kleene star
- complement
Closure under union

Theorem

For any two NFA's N_1 and N_2 there is a NFA N such that
$L(N) = L(N_1) \cup L(N_2)$.
Closure under union

Theorem

For any two NFA N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cup L(N_2)$.
Closure under concatenation

Theorem

For any two NFA\(s\) \(N_1\) and \(N_2\) there is a NFA \(N\) such that \(L(N) = L(N_1) \cdot L(N_2)\).
Theorem

For any two NFA's N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cdot L(N_2)$.

![Diagram of NFA's N_1 and N_2](image)
Theorem

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.
Closure under Kleene star

Theorem

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

Does not work! Why?
Closure under Kleene star

Theorem

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

Does not work! Why?
Closure under Kleene star

Theorem

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^\ast$.
Part IV

NFA's capture Regular Languages
Regular Languages Recap

Regular Languages

- \emptyset regular
- $\{\epsilon\}$ regular
- $\{a\}$ regular for $a \in \Sigma$
- $R_1 \cup R_2$ regular if both are
- $R_1 R_2$ regular if both are
- R^* is regular if R is

Regular Expressions

- \emptyset denotes \emptyset
- ϵ denotes $\{\epsilon\}$
- a denote $\{a\}$
- $r_1 + r_2$ denotes $R_1 \cup R_2$
- $r_1 r_2$ denotes $R_1 R_2$
- r^* denote R^*

Regular expressions denote regular languages — they explicitly show the operations that were used to form the language.
Theorem

For every regular language L there is an NFA N such that $L = L(N)$.

Proof strategy:

- For every regular expression r show that there is a NFA N such that $L(r) = L(N)$
- Induction on length of r
For every regular expression r show that there is a NFA N such that $L(r) = L(N)$

Induction on length of r

Base cases: \emptyset, $\{\varepsilon\}$, $\{a\}$ for $a \in \Sigma$.

NFA\textsc{s} and Regular Language

- For every regular expression r show that there is a \textbf{NFA} N such that $L(r) = L(N)$
- Induction on length of r

\textbf{Inductive cases:}

- r_1, r_2 regular expressions and $r = r_1 + r_2$.
 - By induction there are \textbf{NFAs} N_1, N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is \textbf{NFA} N s.t $L(N) = L(N_1) \cup L(N_2)$, hence $L(N) = L(r)$
- $r = r_1 \cdot r_2$. Use closure of \textbf{NFA} languages under concatenation
- $r = (r_1)^*$. Use closure of \textbf{NFA} languages under Kleene star
NFAs and Regular Language

- For every regular expression \(r \) show that there is a NFA \(N \) such that \(L(r) = L(N) \)

- Induction on length of \(r \)

Inductive cases:

- \(r_1, r_2 \) regular expressions and \(r = r_1 + r_2 \).
 By induction there are NFAs \(N_1, N_2 \) s.t \(L(N_1) = L(r_1) \) and \(L(N_2) = L(r_2) \). We have already seen that there is NFA \(N \) s.t \(L(N) = L(N_1) \cup L(N_2) \), hence \(L(N) = L(r) \)

- \(r = r_1 \cdot r_2 \). Use closure of NFA languages under concatenation

- \(r = (r_1)^* \). Use closure of NFA languages under Kleene star
NFA s and Regular Language

For every regular expression r show that there is a NFA N such that $L(r) = L(N)$

Induction on length of r

Inductive cases:

- r_1, r_2 regular expressions and $r = r_1 + r_2$.

 By induction there are NFA s N_1, N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence $L(N) = L(r)$

- $r = r_1 \cdot r_2$. Use closure of NFA languages under concatenation

- $r = (r_1)^*$. Use closure of NFA languages under Kleene star
NFA$s and Regular Language

- For every regular expression r show that there is a NFA N such that $L(r) = L(N)$
- Induction on length of r

Inductive cases:

- r_1, r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFA$s $ N_1, N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence $L(N) = L(r)$

- $r = r_1 \cdot r_2$. Use closure of NFA languages under concatenation

- $r = (r_1)^*$. Use closure of NFA languages under Kleene star
NFA and Regular Language

For every regular expression r show that there is a NFA N such that $L(r) = L(N)$

Induction on length of r

Inductive cases:

- r_1, r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFA N_1, N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence $L(N) = L(r)$

- $r = r_1 \cdot r_2$. Use closure of NFA languages under concatenation

- $r = (r_1)^*$. Use closure of NFA languages under Kleene star
For every regular expression r show that there is a NFA N such that $L(r) = L(N)$

Induction on length of r

Inductive cases:

- r_1, r_2 regular expressions and $r = r_1 + r_2$.
 By induction there are NFAs N_1, N_2 s.t
 $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence $L(N) = L(r)$

- $r = r_1 \cdot r_2$. Use closure of NFA languages under concatenation

- $r = (r_1)^*$. Use closure of NFA languages under Kleene star
For every regular expression r show that there is a NFA N such that $L(r) = L(N)$

Inductive cases:

- r_1, r_2 regular expressions and $r = r_1 + r_2$.
 By induction there are NFAs N_1, N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence $L(N) = L(r)$

- $r = r_1 \cdot r_2$. Use closure of NFA languages under concatenation

- $r = (r_1)^*$. Use closure of NFA languages under Kleene star
Example

\[(ε+0)(1+10)^*\]
Example

\[(1+10)^* \]
Example

Final NFA simplified slightly to reduce states