Regular Languages and Expressions

Lecture 2
Thursday, January 17, 2019
Part I

Regular Languages
Regular Languages

A class of simple but useful languages.

The set of regular languages over some alphabet Σ is defined inductively as:

1. \emptyset is a regular language.
2. $\{\epsilon\}$ is a regular language.
3. $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
4. If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
5. If L_1, L_2 are regular then L_1L_2 is regular.
6. If L is regular, then $L^* = \cup_{n \geq 0} L^n$ is regular.

The \cdot^* operator name is Kleene star.

Regular languages are closed under the operations of union, concatenation and Kleene star.
Regular Languages

A class of simple but useful languages.

The set of regular languages over some alphabet Σ is defined inductively as:

1. \emptyset is a regular language.
2. $\{\epsilon\}$ is a regular language.
3. $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
4. If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
5. If L_1, L_2 are regular then $L_1 L_2$ is regular.
6. If L is regular, then $L^* = \bigcup_{n \geq 0} L^n$ is regular. The \cdot^* operator name is Kleene star.

Regular languages are closed under the operations of union, concatenation and Kleene star.
Regular Languages

A class of simple but useful languages. The set of regular languages over some alphabet Σ is defined inductively as:

1. \emptyset is a regular language.
2. $\{\epsilon\}$ is a regular language.
3. $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
4. If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
5. If L_1, L_2 are regular then $L_1 L_2$ is regular.
6. If L is regular, then $L^* = \bigcup_{n \geq 0} L^n$ is regular. The * operator name is Kleene star.

Regular languages are closed under the operations of union, concatenation and Kleene star.
Regular Languages

A class of simple but useful languages. The set of regular languages over some alphabet \(\Sigma \) is defined inductively as:

1. \(\emptyset \) is a regular language.
2. \(\{\epsilon\} \) is a regular language.
3. \(\{a\} \) is a regular language for each \(a \in \Sigma \). Interpreting \(a \) as string of length 1.
4. If \(L_1, L_2 \) are regular then \(L_1 \cup L_2 \) is regular.
5. If \(L_1, L_2 \) are regular then \(L_1 L_2 \) is regular.
6. If \(L \) is regular, then \(L^* = \bigcup_{n \geq 0} L^n \) is regular. The \(\cdot^* \) operator name is Kleene star.

Regular languages are closed under the operations of union, concatenation and Kleene star.
Regular Languages

A class of simple but useful languages.

The set of regular languages over some alphabet Σ is defined inductively as:

1. \emptyset is a regular language.
2. $\{\epsilon\}$ is a regular language.
3. $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as a string of length 1.
4. If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
5. If L_1, L_2 are regular then L_1L_2 is regular.
6. If L is regular, then $L^* = \bigcup_{n \geq 0} L^n$ is regular.

The \cdot^* operator name is Kleene star.

Regular languages are closed under the operations of union, concatenation and Kleene star.
Lemma

If w is a string then $L = \{w\}$ is regular.

Example: $\{aba\}$ or $\{abbabbab\}$. Why?

Lemma

Every finite language L is regular.

Examples: $L = \{a, abaab, aba\}$. $L = \{w \mid |w| \leq 100\}$. Why?
Some simple regular languages

Lemma

If w is a string then $L = \{w\}$ is regular.

Example: $\{aba\}$ or $\{abbabbab\}$. Why?

Lemma

Every finite language L is regular.

Examples: $L = \{a, abaab, aba\}$. $L = \{w \mid |w| \leq 100\}$. Why?
More Examples

- \{w \mid w \text{ is a keyword in Python program}\}
- \{w \mid w \text{ is a valid date of the form mm/dd/yy}\}
- \{w \mid w \text{ describes a valid Roman numeral}\}
 \{I, II, III, IV, V, VI, VII, VIII, IX, X, XI, \ldots\}.
- \{w \mid w \text{ contains ”CS374” as a substring}\}.
Part II

Regular Expressions
Regular Expressions

A way to denote regular languages

- simple patterns to describe related strings
- useful in
 - text search (editors, Unix/grep, emacs)
 - compilers: lexical analysis
 - compact way to represent interesting/useful languages
 - dates back to 50’s: Stephen Kleene
 who has a star names after him.
A regular expression \(r \) over an alphabet \(\Sigma \) is one of the following:

Base cases:
- \(\emptyset \) denotes the language \(\emptyset \)
- \(\epsilon \) denotes the language \(\{ \epsilon \} \)
- \(a \) denotes the language \(\{ a \} \)

Inductive cases: If \(r_1 \) and \(r_2 \) are regular expressions denoting languages \(R_1 \) and \(R_2 \) respectively then,
- \((r_1 + r_2) \) denotes the language \(R_1 \cup R_2 \)
- \((r_1 r_2) \) denotes the language \(R_1 R_2 \)
- \((r_1)^* \) denotes the language \(R_1^* \)
Inductive Definition

A **regular expression** r over an alphabet Σ is one of the following:

Base cases:
- \emptyset denotes the language \emptyset
- ϵ denotes the language $\{\epsilon\}$.
- a denote the language $\{a\}$.

Inductive cases: If r_1 and r_2 are regular expressions denoting languages R_1 and R_2 respectively then,
- $(r_1 + r_2)$ denotes the language $R_1 \cup R_2$
- $(r_1 r_2)$ denotes the language $R_1 R_2$
- $(r_1)^*$ denotes the language R_1^*
Regular Languages vs Regular Expressions

Regular Languages

- \emptyset is regular
- $\{\epsilon\}$ is regular
- $\{a\}$ is regular for $a \in \Sigma$
- $R_1 \cup R_2$ is regular if both are regular
- $R_1 R_2$ is regular if both are regular
- R^* is regular if R is regular

Regular Expressions

- \emptyset denotes \emptyset
- ϵ denotes $\{\epsilon\}$
- a denotes $\{a\}$
- $r_1 + r_2$ denotes $R_1 \cup R_2$
- $r_1 r_2$ denotes $R_1 R_2$
- r^* denotes R^*

Regular expressions denote regular languages — they explicitly show the operations that were used to form the language.
For a regular expression r, $L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language! **Example:** $(0 + 1)$ and $(1 + 0)$ denote same language $\{0, 1\}$.

Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.

Omit parenthesis by adopting precedence order: \ast, concatenate, $+$. **Example:** $r^* s + t = ((r^*) s) + t$

Omit parenthesis by associativity of each of these operations. **Example:** $rst = (rs)t = r(st)$, $r + s + t = r + (s + t) = (r + s) + t$.

Superscript $+$. For convenience, define $r^+ = rr^*$. Hence if $L(r) = R$ then $L(r^+) = R^+$.

Other notation: $r + s$, $r \cup s$, $r|s$ all denote union. rs is sometimes written as $r \cdot s$.
For a regular expression r, $L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!

Example: $(0 + 1)$ and $(1 + 0)$ denote the same language $\{0, 1\}$

Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.

Omit parenthesis by adopting precedence order: \ast, concatenate, $+$.

Example: $r^*s + t = ((r^*)s) + t$

Omit parenthesis by associativity of each of these operations.

Example: $rst = (rs)t = r(st)$,
$r + s + t = r + (s + t) = (r + s) + t$.

Superscript $+$. For convenience, define $r^+ = rr^*$. Hence if $L(r) = R$ then $L(r^+) = R^+$.

Other notation: $r + s$, $r \cup s$, $r|s$ all denote union. rs is sometimes written as $r \cdot s$.
For a regular expression r, $L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!

Example: $(0 + 1)$ and $(1 + 0)$ denote same language $\{0, 1\}$

Two regular expressions r_1 and r_2 are **equivalent** if $L(r_1) = L(r_2)$.

Omit parenthesis by adopting precedence order: \ast, concatenate, \oplus.

Example: $r^*s + t = ((r^*)s) + t$

Omit parenthesis by associativity of each of these operations.

Example: $rst = (rs)t = r(st)$, $r + s + t = r + (s + t) = (r + s) + t$.

Superscript \ast. For convenience, define $r^+ = rr^*$. Hence if $L(r) = R$ then $L(r^+) = R^+$.

Other notation: $r + s, r \cup s, r|s$ all denote union. rs is sometimes written as $r \cdot s$.
For a regular expression r, $L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!

Example: $(0 + 1)$ and $(1 + 0)$ denote same language $\{0, 1\}$

Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.

Omit parenthesis by adopting precedence order: \ast, concatenate, $+$.

Example: $r^*s + t = ((r^*)s) + t$

Omit parenthesis by associativity of each of these operations.

Example: $rst = (rs)t = r(st)$,
$r + s + t = r + (s + t) = (r + s) + t$.

Superscript \ast. For convenience, define $r^+ = rr^*$. Hence if $L(r) = R$ then $L(r^+) = R^+$.

Other notation: $r + s$, $r \cup s$, $r|s$ all denote union. rs is sometimes written as $r \cdot s$.
Notation and Parenthesis

- For a regular expression r, $L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!
 Example: $(0 + 1)$ and $(1 + 0)$ denote the same language $\{0, 1\}$

- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.

- Omit parenthesis by adopting precedence order: \ast, concatenate, $+$.
 Example: $r^*s + t = ((r^*)s) + t$

- Omit parenthesis by associativity of each of these operations.
 Example: $rst = (rs)t = r(st)$, $r + s + t = r + (s + t) = (r + s) + t$.

- Superscript \ast. For convenience, define $r^+ = rr^*$. Hence if $L(r) = R$ then $L(r^+) = R^+$.

- Other notation: $r + s, r \cup s, r|s$ all denote union. rs is sometimes written as $r \cdot s$.
For a regular expression r, $L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!

Example: $(0 + 1)$ and $(1 + 0)$ denote same language $\{0, 1\}$

Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.

Omit parenthesis by adopting precedence order: \ast, concatenate, \oplus.

Example: $r^*s + t = ((r^*)s) + t$

Omit parenthesis by associativity of each of these operations.

Example: $rst = (rs)t = r(st)$, $r + s + t = r + (s + t) = (r + s) + t$.

Superscript \oplus. For convenience, define $r^+ = rr^*$. Hence if $L(r) = R$ then $L(r^+) = R^+$.

Other notation: $r + s$, $r \cup s$, $r|s$ all denote union. rs is sometimes written as $r \cdot s$.
Skills

- Given a language L “in mind” (say an English description) we would like to write a regular expression for L (if possible)
- Given a regular expression r we would like to “understand” $L(r)$ (say by giving an English description)
Given a language \(L \) “in mind” (say an English description) we would like to write a regular expression for \(L \) (if possible)

Given a regular expression \(r \) we would like to “understand” \(L(r) \) (say by giving an English description)
Understanding regular expressions

- \((0 + 1)^*\): set of all strings over \{0, 1\}
- \((0 + 1)^*001(0 + 1)^*\): strings with 001 as substring
- \(0^* + (0^*10^*10^*10^*)^*\): strings with number of 1’s divisible by 3
- \(∅0\): \{
- \((ε + 1)(01)^*(ε + 0)\): alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- \((ε + 0)(1 + 10)^*\): strings without two consecutive 0s.
Understanding regular expressions

- \((0 + 1)^*\): set of all strings over \([0, 1]\)
- \((0 + 1)^*001(0 + 1)^*\): strings with 001 as substring
- \(0^* + (0^*10^*10^*10^*)^*\): strings with number of 1’s divisible by 3
- \(\emptyset\): {}
- \((\epsilon + 1)(01)^*(\epsilon + 0)\): alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- \((\epsilon + 0)(1 + 10)^*\): strings without two consecutive 0s.
Understanding regular expressions

- \((0 + 1)^*\): set of all strings over \(\{0, 1\}\)
- \((0 + 1)^*001(0 + 1)^*\): strings with \(001\) as substring
- \(0^* + (0^*10^*10^*10^*)^*\): strings with number of 1's divisible by 3
- \(\emptyset\emptyset\): {}
- \((\epsilon + 1)(01)^*(\epsilon + 0)\): alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- \((\epsilon + 0)(1 + 10)^*\): strings without two consecutive 0s.
Understanding regular expressions

- \((0 + 1)^*\): set of all strings over \(\{0, 1\}\)
- \((0 + 1)^*001(0 + 1)^*\): strings with 001 as substring
- \(0^* + (0^*10^*10^*10^*)^*\): strings with number of 1’s divisible by 3
- \(\emptyset\): \(\{\}\)
- \((\epsilon + 1)(01)^*(\epsilon + 0)\): alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- \((\epsilon + 0)(1 + 10)^*\): strings without two consecutive 0s.
Understanding regular expressions

- \((0 + 1)^*\): set of all strings over \(\{0, 1\}\)
- \((0 + 1)^*001(0 + 1)^*\): strings with 001 as substring
- \(0^* + (0^*10^*10^*10^*)^*\): strings with number of 1’s divisible by 3
- \(\emptyset\): {}\)
- \((\epsilon + 1)(01)^*(\epsilon + 0)\): alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- \((\epsilon + 0)(1 + 10)^*\): strings without two consecutive 0s.
Understanding regular expressions

- \((0 + 1)^*\): set of all strings over \(\{0, 1\}\)
- \((0 + 1)^*001(0 + 1)^*\): strings with \(001\) as substring
- \(0^* + (0^*10^*10^*10^*)^*\): strings with number of 1’s divisible by 3
- \(\emptyset\): \(\{\}\)
- \((\epsilon + 1)(01)^*(\epsilon + 0)\): alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- \((\epsilon + 0)(1 + 10)^*\): strings without two consecutive 0s.
Understanding regular expressions

- \((0 + 1)^*\): set of all strings over \(\{0, 1\}\)
- \((0 + 1)^*001(0 + 1)^*\): strings with 001 as substring
- \(0^* + (0^*10^*10^*10^*)^*\): strings with number of 1’s divisible by 3
- \(\emptyset\): \(
\
\)
- \((\epsilon + 1)(01)^*(\epsilon + 0)\): alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- \((\epsilon + 0)(1 + 10)^*\): strings without two consecutive 0s.
Understanding regular expressions

- \((0 + 1)^*\): set of all strings over \(\{0, 1\}\)
- \((0 + 1)^*001(0 + 1)^*\): strings with 001 as substring
- \(0^* + (0^*10^*10^*10^*)^*\): strings with number of 1’s divisible by 3
- \(\emptyset 0\): \(\{\}\)
- \((\varepsilon + 1)(01)^*(\varepsilon + 0)\): alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- \((\varepsilon + 0)(1 + 10)^*\): strings without two consecutive 0s.
Understanding regular expressions

- \((0 + 1)^*\): set of all strings over \(\{0, 1\}\)
- \((0 + 1)^*001(0 + 1)^*\): strings with 001 as substring
- \(0^* + (0^*10*10*10^*)^*\): strings with number of 1’s divisible by 3
- \(\emptyset\): {}
 - \((\epsilon + 1)(01)^*(\epsilon + 0)\): alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- \((\epsilon + 0)(1 + 10)^*\): strings without two consecutive 0s.
Understanding regular expressions

- $(0 + 1)^*$: set of all strings over $\{0, 1\}$
- $(0 + 1)^*001(0 + 1)^*$: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1’s divisible by 3
- \emptyset_0: $\{\}$
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.
Understanding regular expressions

- \((0 + 1)^*\): set of all strings over \(\{0, 1\}\)
- \((0 + 1)^*001(0 + 1)^*\): strings with \(001\) as substring
- \(0^* + (0^*10^*10^*10^*)^*\): strings with number of \(1\)’s divisible by \(3\)
- \(\emptyset\): \(\{\}\)
- \((\epsilon + 1)(01)^*(\epsilon + 0)\): alternating \(0\)s and \(1\)s. Alternatively, no two consecutive \(0\)s and no two consecutive \(1\)s
- \((\epsilon + 0)(1 + 10)^*\): strings without two consecutive \(0\)s.
Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring
 one answer: \((0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*\)
- bitstrings with an even number of 1’s
 one answer: \(0^* + (0^*10^*10^*)^*\)
- bitstrings with an odd number of 1’s
 one answer: \(0^*1r\) where \(r\) is solution to previous part
- bitstrings that do not contain 011 as a substring
- Hard: bitstrings with an odd number of 1s and an odd number of 0s.
Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring
 one answer: \((0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*\)

- bitstrings with an even number of 1’s
 one answer: \(0^* + (0*10*10^*)^*\)

- bitstrings with an odd number of 1’s
 one answer: \(0^*1r\) where \(r\) is solution to previous part

- bitstrings that do not contain 011 as a substring

- Hard: bitstrings with an odd number of 1s and an odd number of 0s.
Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring
 one answer: \((0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*\)

- bitstrings with an even number of 1’s
 one answer: \(0^* + (0^*10^*10^*)^*\)

- bitstrings with an odd number of 1’s
 one answer: \(0^*1r\) where \(r\) is solution to previous part

- bitstrings that do not contain 011 as a substring

- Hard: bitstrings with an odd number of 1s and an odd number of 0s.
Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring
 one answer: $(0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*$

- bitstrings with an even number of 1's
 one answer: $0^* + (0^*10^*10^*)^*$

- bitstrings with an odd number of 1's
 one answer: 0^*1r where r is solution to previous part

- bitstrings that do not contain 011 as a substring

- Hard: bitstrings with an odd number of 1s and an odd number of 0s.
Creating regular expressions

- bitstrings with the pattern \textbf{001} or the pattern \textbf{100} occurring as a substring
 one answer: \((0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*\)

- bitstrings with an even number of \textbf{1}'s
 one answer: \(0^* + (0*10*10*10^*)^*\)

- bitstrings with an odd number of \textbf{1}'s
 one answer: \(0^*1r\) where \(r\) is solution to previous part

- bitstrings that do \textit{not} contain \textbf{011} as a substring

- Hard: bitstrings with an odd number of 1s \textit{and} an odd number of 0s.
Creating regular expressions

- bitstrings with the pattern \texttt{001} or the pattern \texttt{100} occurring as a substring
 one answer: $$(0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*$$

- bitstrings with an even number of \texttt{1}'s
 one answer: $0^* + (0^*10^*10^*)^*$

- bitstrings with an odd number of \texttt{1}'s
 one answer: 0^*1r where r is solution to previous part

- bitstrings that do \textit{not} contain \texttt{011} as a substring

- Hard: bitstrings with an odd number of 1s \textit{and} an odd number of 0s.
Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring
 one answer: \((0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*\)

- bitstrings with an even number of 1’s
 one answer: \(0^* + (0*10*10*)^*\)

- bitstrings with an odd number of 1’s
 one answer: \(0^*1r\) where \(r\) is solution to previous part

- bitstrings that do not contain 011 as a substring

- Hard: bitstrings with an odd number of 1s and an odd number of 0s.
Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring
 one answer: $(0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*$

- bitstrings with an even number of 1’s
 one answer: $0^* + (0^*10^*10^*)^*$

- bitstrings with an odd number of 1’s
 one answer: 0^*1r where r is solution to previous part

- bitstrings that do not contain 011 as a substring

- Hard: bitstrings with an odd number of 1s and an odd number of 0s.
Bit strings with odd number of 0s and 1s

The regular expression is

$$\left((00 + 11)^* (01 + 10) \right) \left(00 + 11 + (01 + 10)(00 + 11)^* (01 + 10)\right)^*$$

(Solved using techniques to be presented in the following lectures...)
Regular expression identities

- $r^* r^* = r^*$ meaning for any regular expression r,
 $L(r^* r^*) = L(r^*)$

- $(r^*)^* = r^*$

- $rr^* = r^* r$

- $(rs)^* r = r(sr)^*$

- $(r + s)^* = (r^* s^*)^* = (r^* + s^*)^* = (r + s^*)^* = \ldots$

Question: How does one prove an identity?
By induction. On what? Length of r since r is a string obtained from specific inductive rules.
Regular expression identities

- \(r^*r^* = r^* \) meaning for any regular expression \(r \),
 \[L(r^*r^*) = L(r^*) \]
- \((r^*)^* = r^*\)
- \(rr^* = r^*r \)
- \((rs)^*r = r(sr)^*\)
- \((r + s)^* = (r^*s^*)^* = (r^* + s^*)^* = (r + s^*)^* = \ldots\)

Question: How does one prove an identity?

By induction. On what? Length of \(r \) since \(r \) is a string obtained from specific inductive rules.
Regular expression identities

- \(r^*r^* = r^* \) meaning for any regular expression \(r \),
 \(L(r^*r^*) = L(r^*) \)
- \((r^*)^* = r^*\)
- \(rr^* = r^*r\)
- \((rs)^*r = r(sr)^*\)
- \((r + s)^* = (r^*s^*)^* = (r^* + s^*)^* = (r + s^*)^* = \ldots\)

Question: How does one prove an identity?
By induction. On what? Length of \(r \) since \(r \) is a string obtained from specific inductive rules.
Regular expression identities

- \(r^* r^* = r^*\) meaning for any regular expression \(r\),
 \[L(r^* r^*) = L(r^*)\]
- \((r^*)^* = r^*\)
- \(rr^* = r^* r\)
- \((rs)^* r = r(sr)^*\)
- \((r + s)^* = (r^* s^*)^* = (r^* + s^*)^* = (r + s^*)^* = \ldots\)

Question: How does one prove an identity?
By induction. On what? Length of \(r\) since \(r\) is a string obtained from specific inductive rules.
A non-regular language and other closure properties

Consider \(L = \{ 0^n1^n \mid n \geq 0 \} = \{ \epsilon, 01, 0011, 000111, \ldots \} \).

Theorem

\(L \) is not a regular language.

How do we prove it?

Other questions:

- Suppose \(R_1 \) is regular and \(R_2 \) is regular. Is \(R_1 \cap R_2 \) regular?
- Suppose \(R_1 \) is regular is \(\bar{R}_1 \) (complement of \(R_1 \)) regular?
A non-regular language and other closure properties

Consider \(L = \{0^n1^n \mid n \geq 0\} = \{\epsilon, 01, 0011, 000111, \ldots\} \).

Theorem

\(L \) is not a regular language.

How do we prove it?

Other questions:

- Suppose \(R_1 \) is regular and \(R_2 \) is regular. Is \(R_1 \cap R_2 \) regular?
- Suppose \(R_1 \) is regular is \(\overline{R_1} \) (complement of \(R_1 \)) regular?
Consider $L = \{0^n1^n \mid n \geq 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}$.

Theorem

L is not a regular language.

How do we prove it?

Other questions:

- Suppose R_1 is regular and R_2 is regular. Is $R_1 \cap R_2$ regular?
- Suppose R_1 is regular is \bar{R}_1 (complement of R_1) regular?
A non-regular language and other closure properties

Consider \(L = \{0^n1^n \mid n \geq 0\} = \{\epsilon, 01, 0011, 000111, \ldots\} \).

Theorem

\(L \) is **not** a regular language.

How do we prove it?

Other questions:

- Suppose \(R_1 \) is regular and \(R_2 \) is regular. Is \(R_1 \cap R_2 \) regular?
- Suppose \(R_1 \) is regular is \(\bar{R}_1 \) (complement of \(R_1 \)) regular?