
Well, ya turn left by the fire station in the village and take the old post road by the
reservoir and. . .no, that won’t do.
Best to continue straight on by the tar road until you reach the schoolhouse and then
turn left on the road to Bennett’s Lake until. . . no, that won’t work either.
East Millinocket, ya say? Come to think of it, you can’t get there from here.

— Robert Bryan and Marshall Dodge,
Bert and I and Other Stories from Down East (1961)

Hey farmer! Where does this road go?
Been livin’ here all my life, it ain’t gone nowhere yet.

Hey farmer! How do you get to Little Rock?
Listen stranger, you can’t get there from here.

Hey farmer! You don’t know very much do you?
No, but I ain’t lost.

— Michelle Shocked, “Arkansas Traveler” (1992)

CHAPTER 8
Shortest Paths

ÆÆÆThis is the Spring 2016 revision in the new skin; it still needs significant revision. In par-ticular, several figures need to be redrawn in OmniGraffle.

8.1 Introduction

Suppose we are given a weighted directed graph G = (V, E, w) with two special vertices,
and we want to find the shortest path from a source vertex s to a target vertex t. That
is, we want to find the directed path p starting at s and ending at t that minimizes the
function

w(p) :=
∑

u�v∈p

w(u�v).

For example, if I want to answer the question “What’s the fastest way to drive from my
old apartment in Champaign, Illinois to my wife’s old apartment in Columbus, Ohio?”,
I might use a graph whose vertices are cities, edges are roads, weights are driving times,

© Copyright 2016 Jeff Erickson.This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).Free distribution is strongly encouraged; commercial distribution is expressly forbidden.See http://jeffe.cs.illinois.edu/teaching/algorithms/ for the most recent revision. 1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu/teaching/algorithms/


8. SHORTEST PATHS

s is Champaign, and t is Columbus.¹ The graph is directed, because driving times along
the same road might be different in different directions. (At one time, there was a speed
trap on I-70 just east of the Indiana/Ohio border, but only for eastbound traffic.)

Perhaps counter to intuition, we will allow the weights on the edges to be negative.
Negative edges make our lives complicated, because the presence of a negative cycle
might imply that there is no shortest path. In general, a shortest path from s to t exists
if and only if there is at least one path from s to t, but there is no path from s to t that
touches a negative cycle. If any negative cycle is reachable from s and can reach t, we
can always find a shorter path by going around the cycle one more time.

ÆÆÆ I’m abusing terminology here; by definition, a path cannot repeat vertices. Negative cyclesmean that theremay be no shortestwalk from s to t . As long as t is reach able from s, there isalways a shortest path; it’s just NP-hard to compute. On the other hand, if there is a shortest
walk from s to t , that walk is in fact a path, and therefore the shortest path, from s to t . Blerg.

s t5

2 −8

4 1

3

Figure 8.1. There is no shortest path from s to t .
Almost every algorithm known for solving this problem actually solves (large portions

of) the following more general single source shortest path or SSSP problem: Find the
shortest path from the source vertex s to every other vertex in the graph. This problem is
usually solved by finding a shortest path tree rooted at s that contains all the desired
shortest paths.

It’s not hard to see that if shortest paths are unique, then they form a tree, because
any subpath of a shortest path is itself a shortest path. If there are multiple shortest
paths to some vertices, we can always choose one shortest path to each vertex so that
the union of the paths is a tree. If there are shortest paths to two vertices u and v that
diverge, then meet, then diverge again, we can modify one of the paths without changing
its length so that the two paths only diverge once.

Although they are both optimal spanning trees, shortest-path trees and minimum
spanning trees are very different creatures. Shortest-path trees are rooted and directed;
minimum spanning trees are unrooted and undirected. Shortest-path trees are most
naturally defined for directed graphs; only undirected graphs have minimum spanning
trees. If edge weights are distinct, there is only one minimum spanning tree, but every

1West on Church, north on Prospect, east on I-74, south on I-465, east on Airport Expressway, north on
I-65, east on I-70, north on Grandview, east on 5th, north on Olentangy River, east on Dodridge, north on
High, west on Kelso, south on Neil. Depending on traffic. We both live in Urbana now.

2



8.2. Warning!

s

u

v

a

b c

d

x y

Figure 8.2. If s�a�b�c�d�v and s�a�x�y�d�u are shortest paths, then s�a�b�c�d�u is also a short-est path.

source vertex induces a different shortest-path tree; moreover, it is possible for every
shortest path tree to use a different set of edges from the minimum spanning tree.

8 5
10

2 3

18
12

14

4

30
16

26

8 5
10

2 3

18
12

14
4

30
16

26

Figure 8.3. A minimum spanning tree and a shortest path tree (rooted at the top vertex) of the same undirectedgraph.

8.2 Warning!

Throughout this chapter, we will explicitly consider only directed graphs. All of the
algorithms described in this lecture also work for undirected graphs with some minor
modifications, but only if negative edges are prohibited. Dealing with negative edges
in undirected graphs is considerably more subtle. We cannot simply replace every
undirected edge with a pair of directed edges, because this would transform any negative
edge into a short negative cycle. Subpaths of an undirected shortest path that contains a
negative edge are not necessarily shortest paths; consequently, the set of all undirected
shortest paths from a single source vertex may not define a tree, even if shortest paths
are unique.

s

u v

1 1

–1

s

u v

1 1

–1

s

u v

1 1

–1

An undirected graph where shortest paths from s are unique but do not define a tree.
A complete treatment of undirected graphs with negative edges is beyond the scope

of this chapter, or even the entire book. I will only mention, for people who want to

3



8. SHORTEST PATHS

follow up via Google, that a single shortest path in an undirected graph with negative
edges can be computed in O(V E + V 2 log V ) time, by a reduction to maximum weighted
matching.

8.3 The Only SSSP Algorithm

Just like graph traversal and minimum spanning trees, there are several different SSSP
algorithms, but they are all special cases of the a single generic algorithm, first proposed
by Lester Ford in 1956, and independently by George Dantzig in 1957.² Each vertex v in
the graph stores two values, which (inductively) describe a tentative shortest path from s
to v.
• dist(v) is the length of the tentative shortest s v path, or∞ if there is no such path.

• pred(v) is the predecessor of v in the tentative shortest s v path, or Null if there is
no such vertex.

In fact, the predecessor pointers automatically define a tentative shortest path tree; they
play exactly the same role as the parent pointers in our generic graph traversal algorithm.
At the beginning of the algorithm, we already know that dist(s) = 0 and pred(s) = Null.
For every vertex v 6= s, we initially set dist(v) =∞ and pred(v) = Null to indicate that
we do not know of any path from s to v.

During the execution of the algorithm, we call an edge u�v tense if dist(u)+w(u�v)<
dist(v). If u�v is tense, the tentative shortest path s v is clearly incorrect, because the
path s u�v is shorter. Our generic algorithm repeatedly finds a tense edge in the graph
and relaxes it:

Relax(u�v):
dist(v)← dist(u) +w(u�v)
pred(v)← u

When there are no tense edges, the algorithm halts, and we have our desired shortest
path tree.

The correctness of Ford’s generic relaxation algorithm follows from the following
series of claims:

1. For every vertex v, the distance dist(v) is either∞ or the length of some walk
from s to v. This claim can be proved by induction on the number of relaxations.

2. If the graph has no negative cycles, then dist(v) is either∞ or the length of some
simple path from s to v. Specifically, if dist(v) is the length of a walk from s to v
that contains a directed cycle, that cycle must have negative weight. This claim
implies that if G has no negative cycles, the relaxation algorithm eventually halts,
because there are only a finite number of simple paths in G.

2Specifically, Dantzig showed that the shortest path problem can be phrased as a linear programming
problem, and then described an interpretation of his simplex method in terms of the original graph. His
description is equivalent to Ford’s relaxation strategy.

4



8.4. Best-First: Dijkstra’s Algorithm

3. If no edge in G is tense, then for every vertex v, the distance dist(v) is the length
of the predecessor path s� · · ·pred(pred(v))�pred(v)�v. Specifically, if v violates
this condition but its predecessor pred(v) does not, the edge pred(v)�v is tense.

4. If no edge in G is tense, then for every vertex v, the path of predecessor edges

s� · · ·�pred(pred(v))�pred(v)�v

is a shortest path from s to v. Specifically, if v violates this condition but its
predecessor u in some shortest path does not, the edge u�v is tense. This claim
also implies that if the G has a negative cycle, then some edge is always tense, so
the generic algorithm never halts.

So far I haven’t said anything about how we detect which edges can be relaxed, or
in what order we relax them. To make this easier, we refine the relaxation algorithm
slightly, into something closely resembling the generic graph traversal algorithm. We
maintain a “bag” of vertices, initially containing just the source vertex s. Whenever we
take a vertex u from the bag, we scan all of its outgoing edges, looking for something
to relax. Finally, whenever we successfully relax an edge u�v, we put v into the bag.
Unlike our generic graph traversal algorithm, we do not mark vertices when we visit
them; the same vertex could be visited many times, and the same edge could be relaxed
many times.

InitSSSP(s):
dist(s)← 0
pred(s)← Null
for all vertices v 6= s

dist(v)←∞
pred(v)← Null

GenericSSSP(s):
InitSSSP(s)
put s in the bag
while the bag is not empty

take u from the bag
for all edges u�v

if u�v is tense
Relax(u�v)
put v in the bag

Just as with graph traversal, different “bag” data structures for the give us different
algorithms. There are three obvious choices to try: a stack, a queue, and a priority queue.
Unfortunately, if we use a stack, the resulting algorithm performs Θ(2V ) relaxation
steps in the worst case! (Proving this is a good homework problem.) The other two
possibilities are much more efficient.

8.4 Best-First: Dijkstra’s Algorithm

If we implement the bag using a priority queue, where the key of a vertex v is its
tentative distance dist(v), we obtain an algorithm first “published” in 1957 by a team
of researchers at the Case Institute of Technology, in an annual project report for the
Combat Development Department of the US Army Electronic Proving Ground. The

5



8. SHORTEST PATHS

same algorithm was later independently rediscovered and actually publicly published
by Edsger Dijkstra in 1959. A nearly identical algorithm was also described by George
Dantzig in 1958.

Dijkstra’s algorithm, as it is universally known³, is particularly well-behaved if the
graph has no negative-weight edges. In this case, it’s not hard to show (by induction, of
course) that the vertices are scanned in increasing order of their shortest-path distance
from s. It follows that each vertex is scanned at most once, and thus that each edge is
relaxed at most once. Since the key of each vertex in the heap is its tentative distance
from s, the algorithm performs a DecreaseKey operation every time an edge is relaxed.
Thus, the algorithm performs at most E DecreaseKeys. Similarly, there are at most V
Insert and ExtractMin operations. Thus, if we store the vertices in a Fibonacci heap,
the total running time of Dijkstra’s algorithm is O(E + V log V); if we use a regular
binary heap, the running time is O(E log V).

This analysis assumes that no edge has negative weight. Dijkstra’s algorithm (in the
form I’m presenting here⁴) is still correct if there are negative edges, but the worst-case
running time could be exponential. (Proving this unfortunate fact is a good homework
problem.) On the other hand, in practice, Dijkstra’s algorithm is usually quite fast even
for graphs with negative edges.

8.5 Breadth-First: Shimbel’s Algorithm

ÆÆÆ Okay, I give up. Call this algorithm “Bellman-Ford” like everyone else in the world.Swap the breadth-first and dynamic programming formulations?
If we replace the heap in Dijkstra’s algorithm with a FIFO queue, we obtain an

algorithm first sketched by Shimbel in 1954, described in more detail by Moore in 1957,
then independently rediscovered by Woodbury and Dantzig in 1957 and again by Bellman
in 1958. Because Bellman explicitly used Ford’s formulation of relaxing edges, this
algorithm is almost universally called “Bellman-Ford”, although some early sources refer
to “Bellman-Shimbel”. Shimbel’s algorithm is efficient even if there are negative edges,
and it can be used to quickly detect the presence of negative cycles. If there are no
negative edges, however, Dijkstra’s algorithm is faster. (In fact, in practice, Dijkstra’s
algorithm is often faster even for graphs with negative edges.)

3I will follow this common convention, despite the historical inaccuracy, partly because I don’t think
anybody wants to read about the “Leyzorek-Gray-Johnson-Ladew-Meaker-Petry-Seitz algorithm”, and partly
because papers that aren’t actually publically published don’t count.

4Most algorithms textbooks, Wikipedia, and even Dijkstra’s original paper present a version of Dijkstra’s
algorithm that gives incorrect results for graphs with negative edges, because it never visits the same vertex
more than once. This is also the version of Dijkstra’s algorithm that I described as “best-first search” in
Chapter 5. Here I’ve taken the liberty of correcting Dijkstra’s mistake. Even Dijkstra would agree that a
correct algorithm that is sometimes slow (and in practice, rarely slow) is better than a fast algorithm that
doesn’t always work.

6



8.5. Breadth-First: Shimbel’s Algorithm

1

3 2

0 5

10 12

8

4

6 3

7

s

∞

∞

∞

∞

4

3

1

3 2

0 5

10 12

8

4

6 3

7

s
0

∞

∞

∞

∞

∞

∞

1

3 2

0 5

10 12

8

4

6 3

7

s

∞

∞

∞

4

3

12

1

3 2

0 5

10 12

8

4

6 3

7

s

∞

∞

4

3

94
1

3 2

0 5

10 12

8

4

6 3

7

s

4

3

94

7

14

0 0

0 0

Figure 8.4. Four phases of Dijkstra’s algorithm run on a graph with no negative edges. At each phase, the shadedvertices are in the heap, and the bold vertex has just been scanned. The bold edges describe the evolving shortestpath tree.

The easiest way to analyze the algorithm is to break the execution into phases, by
introducing an imaginary token. Before we even begin, we insert the token into the
queue. The current phase ends when we take the token out of the queue; we begin the
next phase by reinserting the token into the queue. The 0th phase consists entirely of
scanning the source vertex s. The algorithm ends when the queue contains only the
token. A simple inductive argument (hint, hint) implies the following invariant for every
integer i and vertex v:

After i phases of the algorithm, dist(v) is at most the
length of the shortest walk from s to v consisting of at
most i edges.

ÆÆÆInclude the induction proof.
Since a shortest path can only pass through each vertex once, either the algorithm

halts before the V th phase, or the graph contains a negative cycle. In each phase, we
scan each vertex at most once, so we relax each edge at most once, so the running time of
a single phase is O(E). Thus, the overall running time of Shimbel’s algorithm is O(VE).

Once we understand how the phases of Shimbel’s algorithm behave, we can simplify
the algorithm considerably by producing the same behavior on purpose (following the
same design pattern that we advocated for dynamic programming in Chapter 3). Instead

7



8. SHORTEST PATHS

−2

1

2

0 5

4

6 3

s
0

−3

−18

a

b

c

d

e

f 1

2

0 5

4

6 3

s
0

−3

−18

a

b

c

d

e

f

1

2

0 5

4

6 3

s
0

∞

−3

−18

a

b

c

d

e

f1

2

0 5

4

6 3

s
0

∞

∞

∞

∞

∞

∞ −3

−18

a

b

c

d

e

f 1

2

0 5

4

6 3

s
0

∞

∞

∞

−3

−18

a

b

c

d

e

f

6

4

3 6

2

3

74

3

2

2 7

9
−8−8

−8−8−8

−3 −3

−3 −3

−3

1

9

7

2

3

1

Figure 8.5. Four phases of Shimbel’s algorithm run on a directed graph with negative edges. Nodes are takenfrom the queue in the order s � a b c � d f b � a e d � d a � �, where � is the end-of-phase token. Shaded verticesare in the queue at the end of each phase. The bold edges describe the evolving shortest path tree.

of performing a partial breadth-first search of the graph in each phase, we can simply
scan through the adjacency list directly, relaxing every tense edge we find in the graph.

Shimbel-Moore-Woodbury-Dantzig-Bellman-Ford-Brosh:
Relax ALL the tense edges and recurse.

ShimbelSSSP(s)
InitSSSP(s)
repeat V times:

for every edge u�v
if u�v is tense

Relax(u�v)
for every edge u�v

if u�v is tense
return “Negative cycle!”

8



8.6. Dynamic Programming: Shimbel’s Algorithm Again

This is how most textbooks present “Bellman-Ford”.⁵ The O(V E) running time of
this formulation of the algorithm should be obvious, but it may be less clear that the
algorithm is still correct. In fact, correctness follows from exactly the same invariant as
before:

After i phases of the algorithm, dist(v) is at most the
length of the shortest walk from s to v consisting of at
most i edges.

As before, it is straightforward to prove by induction (hint, hint) that this invariant holds
for every integer i and vertex v.

8.6 Dynamic Programming: Shimbel’s Algorithm Again

Shimbel’s algorithm can also be recast as a dynamic programming algorithm. Let disti(v)
denote the length of the shortest path s v consisting of at most i edges. It’s not hard to
see that this function obeys the following recurrence:

disti(v) =



















0 if i = 0 and v = s

∞ if i = 0 and v 6= s

min

¨

disti−1(v),
min

u�v∈E
(disti−1(u) +w(u�v))

«

otherwise

For the moment, let’s assume the graph has no negative cycles; our goal is to compute
distV−1(t). We can clearly memoize this two-parameter function into a two-dimensional
array. A straightforward dynamic programming evaluation of this recurrence looks like
this:

ShimbelDP(s)
dist[0, s]← 0
for every vertex v 6= s

dist[0, v]←∞
for i← 1 to V − 1

for every vertex v
dist[i, v]← dist[i − 1, v]
for every edge u�v

if dist[i, v]> dist[i − 1, u] +w(u�v)
dist[i, v]← dist[i − 1, u] +w(u�v)

5In fact, this is essentially the formulation proposed by both Shimbel and Bellman. Bob Tarjan
recognized in the early 1980s that Shimbel’s algorithm is equivalent to Dijkstra’s algorithm with a queue
instead of a heap.

9



8. SHORTEST PATHS

Now let us make two minor changes to this algorithm. First, we remove one level of
indentation from the last three lines. This may change the order in which we examine
edges, but the modified algorithm still computes disti(v) for all i and v. Second, we
change the indices in the last two lines from i − 1 to i. This change may cause the
distances dist[i, v] to approach the true shortest-path distances more quickly than before,
but the algorithm is still correct.

ShimbelDP2(s)
dist[0, s]← 0
for every vertex v 6= s

dist[0, v]←∞
for i← 1 to V − 1

for every vertex v
dist[i, v]← dist[i − 1, v]

for every edge u�v
if dist[i, v]> dist[i, u] +w(u�v)

dist[i, v]← dist[i, u] +w(u�v)

Now notice that the iteration index i is completely redundant! We really only need
to keep a one-dimensional array of distances, which means we don’t need to scan the
vertices in each iteration of the main loop.

ShimbelDP3(s)
dist[s]← 0
for every vertex v 6= s

dist[v]←∞
for i← 1 to V − 1

for every edge u�v
if dist[v]> dist[u] +w(u�v)

dist[v]← dist[u] +w(u�v)

The resulting algorithm is almost identical to our earlier algorithm ShimbelSSSP! The
first three lines initialize the shortest path distances, and the last two lines check whether
an edge is tense, and if so, relaxes it. The only feature missing from the new algorithm
is explicit maintenance of predecessors, but that’s easy to add.

Exercises

ÆÆÆ Need more!
1. Prove that the following invariant holds for every integer i and every vertex v: After i

phases of Shimbel’s algorithm (in either formulation), dist(v) is at most the length of
the shortest path s v consisting of at most i edges.

10



Exercises

2. Let G be a directed graph with edge weights (which may be positive, negative, or
zero), and let s be an arbitrary vertex of G.

(a) Suppose every vertex v stores a number dist(v). Describe and analyze an algorithm
to determine whether dist(v) is the shortest-path distance from s to v, for every
vertex v.

(b) Suppose instead that every vertex v 6= s stores a pointer pred(v) to another vertex
in G. Describe and analyze an algorithm to determine whether these predecessor
pointers define a single-source shortest path tree rooted at s.

Do not assume that G contains no negative cycles.

3. A looped tree is a weighted, directed graph built from a binary tree by adding an edge
from every leaf back to the root. Every edge has a non-negative weight.

5 8

17 0 1

23 9 14

42416 7

A looped tree.

(a) How much time would Dijkstra’s algorithm require to compute the shortest path
between two vertices u and v in a looped tree with n nodes?

(b) Describe and analyze a faster algorithm.

4. Suppose we are given an undirected graph G in which every vertex has a positive
weight.

(a) Describe and analyze an algorithm to find a spanning tree of G with minimum
total weight. (The total weight of a spanning tree is the sum of the weights of its
vertices.)

(b) Describe and analyze an algorithm to find a path in G from one given vertex s to
another given vertex t with minimum total weight. (The total weight of a path is
the sum of the weights of its vertices.)

[Hint: One of these problems is trivial.]

5. For any edge e in any graph G, let G \ e denote the graph obtained by deleting e
from G.

11



8. SHORTEST PATHS

(a) Suppose we are given a directed graph G in which the shortest path σ from
vertex s to vertex t passes through every vertex of G. Describe an algorithm to
compute the shortest-path distance from s to t in G \ e, for every edge e of G, in
O(E log V ) time. Your algorithm should output a set of E shortest-path distances,
one for each edge of the input graph. You may assume that all edge weights are
non-negative. [Hint: If we delete an edge of the original shortest path, how do the
old and new shortest paths overlap?]

(b) Let s and t be arbitrary vertices in an arbitrary undirected graph G. Describe an
algorithm to compute the shortest-path distance from s to t in G \ e, for every
edge e of G, in O(E log V ) time. Again, you may assume that all edge weights are
non-negative.

6. Let G = (V, E) be a connected directed graph with non-negative edge weights, let s
and t be vertices of G, and let H be a subgraph of G obtained by deleting some edges.
Suppose we want to reinsert exactly one edge from G back into H, so that the shortest
path from s to t in the resulting graph is as short as possible. Describe and analyze
an algorithm that chooses the best edge to reinsert, in O(E log V ) time.

7. When there is more than one shortest path from one node s to another node t, it is
often convenient to choose a shortest path with the fewest edges; call this the best
path from s to t. Suppose we are given a directed graph G with positive edge weights
and a source vertex s in G. Describe and analyze an algorithm to compute best paths
in G from s to every other vertex.

8. (a) Prove that Ford’s generic shortest-path algorithm (while the graph contains a tense
edge, relax it) can take exponential time in the worst case when implemented
with a stack instead of a priority queue (like Dijkstra) or a queue (like Shimbel).
Specifically, for every positive integer n, construct a weighted directed n-vertex
graph Gn, such that the stack-based shortest-path algorithm call Relax Ω(2n)
times when Gn is the input graph. [Hint: Towers of Hanoi.]

(b) Prove that Dijkstra’s shortest-path algorithm can require exponential time in the
worst case when edges are allowed to have negative weight. Specifically, for every
positive integer n, construct a weighted directed n-vertex graph Gn, such that
Dijkstra’s algorithm calls Relax Ω(2n) times when Gn is the input graph. [Hint:
This is relatively easy if you’ve already solved part (a).]

9. (a) Describe and analyze a modification of Shimbel’s shortest-path algorithm that
actually returns a negative cycle if any such cycle is reachable from s, or a
shortest-path tree if there is no such cycle. The modified algorithm should still
run in O(V E) time.

(b) Describe and analyze a modification of Shimbel’s shortest-path algorithm that
computes the correct shortest path distances from s to every other vertex of

12



Exercises

the input graph, even if the graph contains negative cycles. Specifically, if any
walk from s to v contains a negative cycle, your algorithm should end with
dist(v) = −∞; otherwise, dist(v) should contain the length of the shortest path
from s to v. The modified algorithm should still run in O(V E) time.

(c) Repeat parts (a) and (b), but for Ford’s generic shortest-path algorithm. You may
assume that the unmodified algorithm halts in O(2V ) steps if there is no negative
cycle; your modified algorithms should also run in O(2V ) time.

10. Although we typically speak of “the” shortest path between two nodes, a single graph
could contain several minimum-length paths with the same endpoints.

1
2

2
3 5

3 2
1

1
1

2

4

2 4

3 5
1

2
2
3 5

3 2
1

1
1

2

4

2 4

3 5
1

2
2
3 5

3 2
1

1
1

2

4

2 4

3 5

14

1
2

2
3 5

3 2
1

1
1

2

4

2 4

3 5

14 14 14

Four (of many) equal-length shortest paths.
Describe and analyze an algorithm to determine the number of shortest paths

from a source vertex s to a target vertex t in an arbitrary directed graph G with
weighted edges. You may assume that all edge weights are positive and that all
necessary arithmetic operations can be performed in O(1) time.

[Hint: Compute shortest path distances from s to every other vertex. Throw away
all edges that cannot be part of a shortest path from s to another vertex. What’s left?]

11. You just discovered your best friend from elementary school on Twitbook. You both
want to meet as soon as possible, but you live in two different cites that are far apart.
To minimize travel time, you agree to meet at an intermediate city, and then you
simultaneously hop in your cars and start driving toward each other. But where
exactly should you meet?

You are given a weighted graph G = (V, E), where the vertices V represent cities
and the edges E represent roads that directly connect cities. Each edge e has a weight
w(e) equal to the time required to travel between the two cities. You are also given
a vertex p, representing your starting location, and a vertex q, representing your
friend’s starting location.

Describe and analyze an algorithm to find the target vertex t that allows you and
your friend to meet as quickly as possible.

12. After a grueling algorithms midterm, you decide to take the bus home. Since you
planned ahead, you have a schedule that lists the times and locations of every stop of
every bus in Champaign-Urbana. Unfortunately, there isn’t a single bus that visits

13



8. SHORTEST PATHS

both your exam building and your home; you must transfer between bus lines at least
once.

Describe and analyze an algorithm to determine the sequence of bus rides that
will get you home as early as possible, assuming there are b different bus lines, and
each bus stops n times per day. Your goal is to minimize your arrival time, not the
time you actually spend traveling. Assume that the buses run exactly on schedule,
that you have an accurate watch, and that you are too tired to walk between bus
stops.

13. After graduating you accept a job with Aerophobes- R-Us, the leading traveling agency
for people who hate to fly. Your job is to build a system to help customers plan
airplane trips from one city to another. All of your customers are afraid of flying (and
by extension, airports), so any trip you plan needs to be as short as possible. You
know all the departure and arrival times of all the flights on the planet.

Suppose one of your customers wants to fly from city X to city Y . Describe
an algorithm to find a sequence of flights that minimizes the total time in transit—
the length of time from the initial departure to the final arrival, including time at
intermediate airports waiting for connecting flights. [Hint: Modify the input data
and apply Dijkstra’s algorithm.]

14. Mulder and Scully have computed, for every road in the United States, the exact
probability that someone driving on that road won’t be abducted by aliens. Agent
Mulder needs to drive from Langley, Virginia to Area 51, Nevada. What route should
he take so that he has the least chance of being abducted?

More formally, you are given a directed graph G = (V, E), where every edge e has
an independent safety probability p(e). The safety of a path is the product of the
safety probabilities of its edges. Design and analyze an algorithm to determine the
safest path from a given start vertex s to a given target vertex t.

0.2

0.7

0.50.9

0.1

0.5
Langley, VA

Area 51, AZ

Memphis, TN

Las Vegas, NV

For example, with the probabilities shown above, if Mulder tries to drive directly
from Langley to Area 51, he has a 50% chance of getting there without being abducted.
If he stops in Memphis, he has a 0.7×0.9= 63% chance of arriving safely. If he stops
first in Memphis and then in Las Vegas, he has a 1− 0.7× 0.1× 0.5= 96.5% chance

14



Exercises

of being abducted! (That’s how they got Elvis, you know.) Although this example is a
dag, your algorithm must handle arbitrary directed graphs.

15. On an overnight camping trip in Sunnydale National Park, you are woken from a
restless sleep by a scream. As you crawl out of your tent to investigate, a terrified
park ranger runs out of the woods, covered in blood and clutching a crumpled piece
of paper to his chest. As he reaches your tent, he gasps, “Get out. . . while. . . you. . . ”,
thrusts the paper into your hands, and falls to the ground. Checking his pulse, you
discover that the ranger is stone dead.

You look down at the paper and recognize a map of the park, drawn as an
undirected graph, where vertices represent landmarks in the park, and edges represent
trails between those landmarks. (Trails start and end at landmarks and do not cross.)
You recognize one of the vertices as your current location; several vertices on the
boundary of the map are labeled EXIT.

On closer examination, you notice that someone (perhaps the poor dead park
ranger) has written a real number between 0 and 1 next to each vertex and each edge.
A scrawled note on the back of the map indicates that a number next to an edge is the
probability of encountering a vampire along the corresponding trail, and a number
next to a vertex is the probability of encountering a vampire at the corresponding
landmark. (Vampires can’t stand each other’s company, so you’ll never see more than
one vampire on the same trail or at the same landmark.) The note warns you that
stepping off the marked trails will result in a slow and painful death.

You glance down at the corpse at your feet. Yes, his death certainly looked painful.
Wait, was that a twitch? Are his teeth getting longer? After driving a tent stake
through the undead ranger’s heart, you wisely decide to leave the park immediately.

Describe and analyze an efficient algorithm to find a path from your current
location to an arbitrary EXIT node, such that the total expected number of vampires
encountered along the path is as small as possible. Be sure to account for both the
vertex probabilities and the edge probabilities!

— Randall Munroe, xkcd (http://xkcd.com/69/)Reproduced under a Creative Commons Attribution-NonCommercial 2.5 License

© Copyright 2016 Jeff Erickson.This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).Free distribution is strongly encouraged; commercial distribution is expressly forbidden.See http://jeffe.cs.illinois.edu/teaching/algorithms for the most recent revision. 15

http://xkcd.com/69/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu/teaching/algorithms

	Shortest Paths
	Introduction
	Warning!
	The Only SSSP Algorithm
	Best-First: Dijkstra's Algorithm
	Breadth-First: Shimbel’s Algorithm
	Dynamic Programming: Shimbel's Algorithm Again


