Undecidability II: More problems via reductions

Lecture 21
Thursday, April 4, 2019
Turing machines...

\[\text{TM} = \text{Turing machine} = \text{program}. \]
Definition 1

Language $L \subseteq \Sigma^*$ is undecidable if no program P, given $w \in \Sigma^*$ as input, can always stop and output whether $w \in L$ or $w \notin L$.

(Usually defined using TM not programs. But equivalent.)
Definition 1

Language $L \subseteq \Sigma^*$ is undecidable if no program P, given $w \in \Sigma^*$ as input, can always stop and output whether $w \in L$ or $w \not\in L$.

(Usually defined using TM not programs. But equivalent.)
Definition 1

Language $L \subseteq \Sigma^*$ is undecidable if no program P, given $w \in \Sigma^*$ as input, can always stop and output whether $w \in L$ or $w \notin L$.

(Usually defined using TM not programs. But equivalent.)
The following language is undecidable

Decide if given a program M, and an input w, does M accepts w. Formally, the corresponding language is

$$A_{TM} = \left\{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \right\}.$$

Definition 2
A decider for a language L, is a program (or a TM) that always stops, and outputs for any input string $w \in \Sigma^*$ whether or not $w \in L$. A language that has a decider is decidable.

Turing proved the following:

Theorem 3
A_{TM} is undecidable.
The following language is undecidable

Decide if given a program M, and an input w, does M accepts w. Formally, the corresponding language is

$$A_{TM} = \left\{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \right\}.$$

Definition 2

A **decider** for a language L, is a program (or a TM) that always stops, and outputs for any input string $w \in \Sigma^*$ whether or not $w \in L$. A language that has a decider is **decidable**.
The following language is undecidable

Decide if given a program M, and an input w, does M accepts w. Formally, the corresponding language is

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}.$$

Definition 2

A **decider** for a language L, is a program (or a TM) that always stops, and outputs for any input string $w \in \Sigma^*$ whether or not $w \in L$.

A language that has a decider is **decidable**.

Turing proved the following:

Theorem 3

A_{TM} is undecidable.
The following language is undecidable

\[A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \} . \]

Assume there is a program \(\text{Decide-}A_{\text{TM}}(\langle M \rangle, \omega) \) such that:

\[\langle M, w \rangle \in A_{\text{TM}} \text{ or } \langle M, w \rangle \notin A_{\text{TM}} \]

if \(M \) accepts \(\omega \).

\(M_{\text{bad}} \):

Input: \(\langle M \rangle \)

- If \(\text{Decide-}A_{\text{TM}}(\langle M \rangle, \langle M \rangle) \) accepts

 rejects

 else

 accepts

Contradiction!

\[\text{Decide-}A_{\text{TM}}(\langle M_{\text{bad}} \rangle, \langle M_{\text{bad}} \rangle) \text{ accept } \Leftrightarrow M_{\text{bad}} \text{ reject } \langle M_{\text{bad}} \rangle \]

\[\text{Decide-}A_{\text{TM}}(\langle M_{\text{bad}} \rangle, \langle M_{\text{bad}} \rangle) \text{ rejects } \Leftrightarrow M_{\text{bad}} \text{ accepts } \langle M_{\text{bad}} \rangle \]
Part I

Reductions
Meta definition: Problem A reduces to problem B, if given a solution to B, then it implies a solution for A. Namely, we can solve B then we can solve A. We will denote this by $A \implies B$.
Meta definition: Problem A reduces to problem B, if given a solution to B, then it implies a solution for A. Namely, we can solve B then we can solve A. We will denote this by $A \implies B$.

Definition 4

oracle ORAC for language L is a function that receives as a word w, returns TRUE $\iff w \in L$.
Meta definition: Problem \(A \) reduces to problem \(B \), if given a solution to \(B \), then it implies a solution for \(A \). Namely, we can solve \(B \) then we can solve \(A \). We will denote this by \(A \implies B \).

Definition 4

oracle **ORAC** for language \(L \) is a function that receives as a word \(w \), returns \(\text{TRUE} \iff w \in L \).

Definition 5

A language \(X \) reduces to a language \(Y \), if one can construct a \(\text{TM} \) decider for \(X \) using a given oracle \(\text{ORAC}_Y \) for \(Y \). We will denote this fact by \(X \implies Y \).
Reduction proof technique

1. **B**: Problem/language for which we want to prove undecidable.
Reduction proof technique

1. **B**: Problem/language for which we want to prove undecidable.
Reduction proof technique

1. **B**: Problem/language for which we want to prove undecidable.
3. **L**: language of **B**.

Assume \(L \) is decided by \(\text{TM} M \).

Create a decider for known undecidable problem \(A \) using \(M \).

Result in decider for \(A \) (i.e., \(A_{\text{TM}} \)).

Contradiction \(A \) is not decidable.

Thus, \(L \) must be not decidable.
Reduction proof technique

1. **B**: Problem/language for which we want to prove undecidable.
3. **L**: language of **B**.
4. Assume **L** is decided by **TM M**.
Reduction proof technique

1. **B**: Problem/language for which we want to prove undecidable.
3. **L**: language of **B**.
4. Assume **L** is decided by **TM M**.
5. Create a decider for known undecidable problem **A** using **M**.
Reduction proof technique

1. **B**: Problem/language for which we want to prove undecidable.
3. **L**: language of **B**.
4. Assume **L** is decided by **TM** **M**.
5. Create a decider for known undecidable problem **A** using **M**.
6. Result in decider for **A** (i.e., **A**TM).
Reduction proof technique

1. **B**: Problem/language for which we want to prove undecidable.
3. **L**: language of **B**.
4. Assume **L** is decided by **TM** **M**.
5. Create a decider for known undecidable problem **A** using **M**.
6. Result in decider for **A** (i.e., **A_{TM}**).
7. Contradiction **A** is not decidable.
Reduction proof technique

1. **B**: Problem/language for which we want to prove undecidable.
3. **L**: language of **B**.
4. Assume **L** is decided by **TM M**.
5. Create a decider for known undecidable problem **A** using **M**.
6. Result in decider for **A** (i.e., **A_{TM}**).
7. Contradiction **A** is not decidable.
8. Thus, **L** must be not decidable.
Reduction implies decidability

Lemma 6

Let X and Y be two languages, and assume that $X \implies Y$. If Y is decidable then X is decidable.

Proof.

Let T be a decider for Y (i.e., a program or a TM). Since X reduces to Y, it follows that there is a procedure $T_{X,Y}$ (i.e., decider) for X that uses an oracle for Y as a subroutine. We replace the calls to this oracle in $T_{X,Y}$ by calls to T. The resulting program T_X is a decider and its language is X. Thus X is decidable (or more formally TM decidable).
The contrapositive...

Lemma 7

Let X and Y be two languages, and assume that $X \iff Y$. If X is undecidable then Y is undecidable.
Part II

Halting
The halting problem

Language of all pairs $\langle M, w \rangle$ such that M halts on w:

$$A_{\text{Halt}} = \left\{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ stops on } w \right\}.$$
The halting problem

Language of all pairs $\langle M, w \rangle$ such that M halts on w:

$$A_{\text{Halt}} = \left\{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ stops on } w \right\}.$$

Similar to language already known to be undecidable:

$$A_{\text{TM}} = \left\{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \right\}.$$
On way to proving that Halting is undecidable...

Lemma 8

The language A_{TM} reduces to A_{Halt}. Namely, given an oracle for A_{Halt} one can build a decider (that uses this oracle) for A_{TM}.
One way to proving that Halting is undecidable...

Proof of lemma

Proof.

Let $\text{ORAC}_{\text{Halt}}$ be the given oracle for A_{Halt}. We build the following decider for A_{TM}.
One way to proving that Halting is undecidable...

Proof of lemma

Proof.

Let \(\text{ORAC}_{\text{Halt}} \) be the given oracle for \(A_{\text{Halt}} \). We build the following decider for \(A_{\text{TM}} \).

\[
\text{Decider-} A_{\text{TM}}(\langle M, w \rangle) = \begin{cases}
\text{reject} & \text{if } \text{res} = \text{reject} \\
\text{accept} & \text{if } \text{res} = \text{accept}
\end{cases}
\]

Simulating \(M \) on \(w \) terminates in finite time.

\[
\text{res} \leftarrow \text{Simulate} M(\langle M, w \rangle).
\]

return \(\text{res} \).
One way to proving that Halting is undecidable...

Proof of lemma

Proof.

Let $\text{ORAC}_{\text{Halt}}$ be the given oracle for A_{Halt}. We build the following decider for A_{TM}.

$$\text{Decider-}A_{\text{TM}}(\langle M, w \rangle)$$

\[
\begin{align*}
\text{res} & \leftarrow \text{ORAC}_{\text{Halt}}(\langle M, w \rangle) \\
// & \text{ if } M \text{ does not halt on } w \text{ then reject.} \\
\text{if } \text{res} = \text{ reject then} & \\
\text{halt and reject.}
\end{align*}
\]
One way to proving that Halting is undecidable...

Proof of lemma

Proof.

Let $\text{ORAC}_{\text{Halt}}$ be the given oracle for A_{Halt}. We build the following decider for A_{TM}.

```
Decider-$A_{\text{TM}}(\langle M, w \rangle)$

\begin{align*}
res & \leftarrow \text{ORAC}_{\text{Halt}}(\langle M, w \rangle) \\
// & \text{ if } M \text{ does not halt on } w \text{ then reject.} \\
\text{if } res = \text{ reject} & \text{ then} \\
& \text{ halt and reject.} \\
// & \text{ M halts on } w \text{ since } res = \text{ accept.} \\
// & \text{ Simulating } M \text{ on } w \text{ terminates in finite time.} \\
res_2 & \leftarrow \text{Simulate } M \text{ on } w. \\
\text{return } res_2.
\end{align*}
```

This procedure always return and as such its a decider for A_{TM}.

\[\square\]
The Halting problem is not decidable

Theorem 9

The language A_{Halt} is not decidable.

Proof.

Assume, for the sake of contradiction, that A_{Halt} is decidable. As such, there is a TM, denoted by TM_{Halt}, that is a decider for A_{Halt}. We can use TM_{Halt} as an implementation of an oracle for A_{Halt}, which would imply by Lemma 8 that one can build a decider for A_{TM}. However, A_{TM} is undecidable. A contradiction. It must be that A_{Halt} is undecidable.
The same proof by figure...

... if A_{Halt} is decidable, then A_{TM} is decidable, which is impossible.
Part III

Emptiness
The language of empty languages

\[E_{TM} = \left\{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \right\}. \]

\[M(x) \]

- Ignore x
- Reject

- \[L(M) = \emptyset \]
The language of empty languages

1. \(E_{TM} = \left\{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \right\} \).

2. \(TM_{ETM} \): Assume we are given this decider for \(E_{TM} \).

3. Need to use \(TM_{ETM} \) to build a decider for \(A_{TM} \).

4. Decider for \(A_{TM} \) is given \(M \) and \(w \) and must decide whether \(M \) accepts \(w \).
The language of empty languages

1. \(E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \} \).

2. \(T M_{ETM} \): Assume we are given this decider for \(E_{TM} \).

3. Need to use \(T M_{ETM} \) to build a decider for \(A_{TM} \).

4. Decider for \(A_{TM} \) is given \(M \) and \(w \) and must decide whether \(M \) accepts \(w \).

5. Idea: hard-code \(w \) into \(M \), creating a TM \(M_w \) which runs \(M \) on the fixed string \(w \).

6. TM \(M_w \):
 1. Input = \(x \) (which will be ignored)
 2. Simulate \(M \) on \(w \).
 3. If the simulation accepts, accept. If the simulation rejects, reject.
Given program $⟨M⟩$ and input w...

...can output a program $⟨M_w⟩$.

The program M_w simulates M on w. And accepts/rejects accordingly.

EmbedString($⟨M, w⟩$) input two strings $⟨M⟩$ and w, and output a string encoding (TM) $⟨M_w⟩$.

Since M_w ignores input x.. language M_w is either $Σ^∗$ or $∅$. It is $Σ^∗$ if M accepts w, and it is $∅$ if M does not accept w.
Given program $\langle M \rangle$ and input w...

...can output a program $\langle M_w \rangle$.

The program M_w simulates M on w. And accepts/rejects according to

EmbedString($\langle M, w \rangle$) input two strings $\langle M \rangle$ and w, and output a string encoding (TM) $\langle M_w \rangle$.

What is $L(M_w)$?
Given program $\langle M \rangle$ and input w...

...can output a program $\langle M_w \rangle$.

The program M_w simulates M on w. And accepts/rejects accordingly.

EmbedString($\langle M, w \rangle$) input two strings $\langle M \rangle$ and w, and output a string encoding (TM) $\langle M_w \rangle$.

What is $L(M_w)$?

Since M_w ignores input x. Language M_w is either Σ^* or \emptyset. It is Σ^* if M accepts w, and it is \emptyset if M does not accept w.
Emptiness is undecidable

Theorem 10

The language E_{TM} is undecidable.

1. Assume (for contradiction), that E_{TM} is decidable.
2. TM_{ETM} be its decider.
3. Build decider $AnotherDecider-A_{TM}$ for A_{TM}:

 $AnotherDecider-A_{TM}(\langle M, w \rangle)$

 $\langle M_w \rangle \leftarrow EmbedString(\langle M, w \rangle)$

 $r \leftarrow TM_{ETM}(\langle M_w \rangle)$.

 if $r = \text{accept}$ then

 if M_w rejects all input

 return reject

 // $TM_{ETM}(\langle M_w \rangle)$ rejected its input

 return accept
Consider the possible behavior of $\text{AnotherDecider-} A_{\text{TM}}$ on the input $\langle M, w \rangle$.

- If $T_{M_{\text{ETM}}}$ accepts $\langle M_w \rangle$, then $L(M_w)$ is empty. This implies that M does not accept w. As such, $\text{AnotherDecider-} A_{\text{TM}}$ rejects its input $\langle M, w \rangle$.

- If $T_{M_{\text{ETM}}}$ accepts $\langle M_w \rangle$, then $L(M_w)$ is not empty. This implies that M accepts w. So $\text{AnotherDecider-} A_{\text{TM}}$ accepts $\langle M, w \rangle$.

Consider the possible behavior of $\text{AnotherDecider-A}_{\text{TM}}$ on the input $\langle M, w \rangle$.

- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is empty. This implies that M does not accept w. As such, $\text{AnotherDecider-A}_{\text{TM}}$ rejects its input $\langle M, w \rangle$.

- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is not empty. This implies that M accepts w. So $\text{AnotherDecider-A}_{\text{TM}}$ accepts $\langle M, w \rangle$.

$\implies \text{AnotherDecider-A}_{\text{TM}}$ is decider for A_{TM}.

But A_{TM} is undecidable...
Emptiness is undecidable...

Proof continued

Consider the possible behavior of $\text{AnotherDecider-} A_{\text{TM}}$ on the input $\langle M, w \rangle$.

- If TM_{ETM} accepts $\langle M, w \rangle$, then $L(M_{w})$ is empty. This implies that M does not accept w. As such, $\text{AnotherDecider-} A_{\text{TM}}$ rejects its input $\langle M, w \rangle$.

- If TM_{ETM} accepts $\langle M, w \rangle$, then $L(M_{w})$ is not empty. This implies that M accepts w. So $\text{AnotherDecider-} A_{\text{TM}}$ accepts $\langle M, w \rangle$.

$\implies \text{AnotherDecider-} A_{\text{TM}}$ is decider for A_{TM}.

But A_{TM} is undecidable...

...must be assumption that E_{TM} is decidable is false.
AnotherDecider-\(A_{TM}\) never actually runs the code for \(M_w\). It hands the code to a function \(TM_{ETM}\) which analyzes what the code would do if run it. So it does not matter that \(M_w\) might go into an infinite loop.
Part IV

Equality
Equality is undecidable

\[EQ_{TM} = \left\{ \langle M, N \rangle \mid M \text{ and } N \text{ are TM's and } L(M) = L(N) \right\}. \]

Lemma 11

The language \(EQ_{TM} \) is undecidable.
Proof

Suppose that we had a decider DeciderEqual for \(EQ_{TM} \). Then we can build a decider for \(E_{TM} \) as follows:

\[TM \quad R: \]

1. Input = \(\langle M \rangle \)
2. Include the (constant) code for a \(TM \) \(T \) that rejects all its input. We denote the string encoding \(T \) by \(\langle T \rangle \).
3. Run DeciderEqual on \(\langle M, T \rangle \).
4. If DeciderEqual accepts, then accept.
5. If DeciderEqual rejects, then reject.
Part V

Regularity
Many undecidable languages

1. Almost any property defining a TM language induces a language which is undecidable.
2. Proofs all have the same basic pattern.
Many undecidable languages

1. Almost any property defining a TM language induces a language which is undecidable.
2. proofs all have the same basic pattern.
3. Regularity language:
 \[\text{Regular}_{TM} = \left\{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is regular} \right\}. \]
4. **DeciderRegL**: Assume TM decider for Regular_{TM}.
5. Reduction from halting requires to turn problem about deciding whether a TM \(M \) accepts \(w \) (i.e., is \(w \in A_{TM} \)) into a problem about whether some TM accepts a regular set of strings.
Given M and w, consider the following TM M'_w:

M'_w:

(i) Input $= x$

(ii) If x has the form $a^n b^n$, halt and accept.
Given M and w, consider the following TM M'_w:

TM M'_w:

(i) Input = x

(ii) If x has the form $a^n b^n$, halt and accept.

(iii) Otherwise, simulate M on w.

(iv) If the simulation accepts, then accept.

(v) If the simulation rejects, then reject.

Assume there is a decider that can tell me if $L(M'_w)$ is reg.
Proof continued...

Given M and w, consider the following TM M'_w:

$TM\ M'_w:$

(i) Input = x

(ii) If x has the form $a^n b^n$, halt and accept.

(iii) Otherwise, simulate M on w.

(iv) If the simulation accepts, then accept.

(v) If the simulation rejects, then reject.

Not executing M'_w!

Feed string $\langle M'_w \rangle$ into DeciderRegL
Given M and w, consider the following TM M'_w:

TM M'_w:
1. Input = x
2. If x has the form $a^n b^n$, halt and accept.
3. Otherwise, simulate M on w.
4. If the simulation accepts, then accept.
5. If the simulation rejects, then reject.

Not executing M'_w!

- **Feed string $⟨M'_w⟩$ into DeciderRegL**
- **EmbedRegularString**: program with input $⟨M⟩$ and w, and outputs $⟨M'_w⟩$, encoding the program M'_w.

Proof continued...

If M accepts w, then $L(M'_w) = \Sigma^*$.

If M does not accept w, then $L(M'_w) = \{a^n b^n | n \geq 0\}$.

Chan, Har-Peled, Hassanieh (UIUC) CS374 28 Spring 2019 28 / 32
Given M and w, consider the following TM M'_w:

M'_w:

(i) Input = x

(ii) If x has the form $a^n b^n$, halt and accept.

(iii) Otherwise, simulate M on w.

(iv) If the simulation accepts, then accept.

(v) If the simulation rejects, then reject.

2 not executing M'_w!

3 feed string $\langle M'_w \rangle$ into DeciderRegL

4 EmbedRegularString: program with input $\langle M \rangle$ and w, and outputs $\langle M'_w \rangle$, encoding the program M'_w.

5 If M accepts w, then any x accepted by M'_w: $L(M'_w) = \Sigma^*$.

6 If M does not accept w, then $L(M'_w) = \{a^n b^n \mid n \geq 0\}$.

Proof continued...

1. $a^n b^n$ is not regular...

2. Use **DeciderRegL** on M'_w to distinguish these two cases.

3. Note - cooked M'_w to the decider at hand.

4. A decider for A_{TM} as follows.

   ```
   \textbf{YetAnotherDecider-} A_{TM}(\langle M, w \rangle )
   
   \langle M'_w \rangle \leftarrow \text{EmbedRegularString}(\langle M, w \rangle )
   
   r \leftarrow \text{DeciderRegL}(\langle M'_w \rangle ).\text{accept}
   
   \text{return } r .
   ```

5. If **DeciderRegL** accepts $\implies L(M'_w)$ regular (its Σ^*)
1. \(a^n b^n \) is not regular...

2. Use \(\text{DeciderRegL} \) on \(M'_w \) to distinguish these two cases.

3. Note - cooked \(M'_w \) to the decider at hand.

4. A decider for \(A_{TM} \) as follows.

   ```
   \text{YetAnotherDecider-A}_{TM} (\langle M, w \rangle)
   \langle M'_w \rangle \leftarrow \text{EmbedRegularString} (\langle M, w \rangle)
   r \leftarrow \text{DeciderRegL} (\langle M'_w \rangle).
   \text{return } r
   ```

5. If \(\text{DeciderRegL} \) accepts \(\iff L(M'_w) \) regular (its \(\Sigma^* \)) \(\iff M \) accepts \(w \). So \(\text{YetAnotherDecider-A}_{TM} \) should accept \(\langle M, w \rangle \).
\(a^n b^n\) is not regular…

1. Use **DeciderRegL** on \(M'_w\) to distinguish these two cases.

2. Note - cooked \(M'_w\) to the decider at hand.

3. A decider for \(A_{TM}\) as follows.

 YetAnotherDecider-\(A_{TM}(\langle M, w \rangle)\)

 \[
 \langle M'_w \rangle \leftarrow \text{EmbedRegularString (\langle M, w \rangle)}

 r \leftarrow \text{DeciderRegL(\langle M'_w \rangle)}.

 \text{return } r
 \]

4. If **DeciderRegL** accepts \(\iff L(M'_w) \text{ regular (its } \Sigma^*) \iff M\) accepts \(w\). So YetAnotherDecider-\(A_{TM}\) should accept \(\langle M, w \rangle\).

5. If **DeciderRegL** rejects \(\iff L(M'_w) \text{ is not regular} \iff L(M'_w) = a^n b^n\)
Proof continued...

1. \(a^n b^n\) is not regular...
2. Use \(\text{DeciderRegL}\) on \(M'_w\) to distinguish these two cases.
3. Note - cooked \(M'_w\) to the decider at hand.
4. A decider for \(A_{\mathbb{TM}}\) as follows.

\[
\text{YetAnotherDecider-}A_{\mathbb{TM}}(\langle M, w \rangle) \\
\langle M'_w \rangle \leftarrow \text{EmbedRegularString}(\langle M, w \rangle) \\
r \leftarrow \text{DeciderRegL}(\langle M'_w \rangle) \\
\text{return } r
\]

5. If \(\text{DeciderRegL}\) accepts \(\implies L(M'_w)\) regular (its \(\Sigma^*\)) \(\implies M\) accepts \(w\). So \(\text{YetAnotherDecider-}A_{\mathbb{TM}}\) should accept \(\langle M, w \rangle\).
6. If \(\text{DeciderRegL}\) rejects \(\implies L(M'_w)\) is not regular \(\implies L(M'_w) = a^n b^n \implies M\) does not accept \(w\) \(\implies \text{YetAnotherDecider-}A_{\mathbb{TM}}\) should reject \(\langle M, w \rangle\).
The above proofs were somewhat repetitious...
...they imply a more general result.

Theorem 12 (Rice’s Theorem.)

Suppose that L is a language of Turing machines; that is, each word in L encodes a TM. Furthermore, assume that the following two properties hold.

(a) Membership in L depends only on the Turing machine’s language, i.e. if $L(M) = L(N)$ then $\langle M \rangle \in L \iff \langle N \rangle \in L$.

(b) The set L is “non-trivial,” i.e. $L \neq \emptyset$ and L does not contain all Turing machines.

Then L is a undecidable.

$A = \{ \langle M \rangle \mid L(M) \text{ has a property } \}$
Rice theorem

\[A = \{ \langle M \rangle \mid M \text{ is TM} \Rightarrow L(M) \text{ has property } P \} \]

Try to show \(\exists \langle M \rangle \in A \)

\[E_{TM} = \{ \langle M \rangle \mid M \text{ is TM} \Rightarrow L(M) = \emptyset \} \]

\[L_{TM} = \{ \langle M \rangle \mid M \text{ is TM} \Rightarrow L(M) = \{0, 374\} \} \]

\[M: \begin{cases} \text{ignore input} & \text{reject} \\ \text{accept} & \text{if } x = 374 \end{cases} \]
Rice theorem

\[
A = \begin{cases}
\{ <M> \mid M \text{ runs in at most 374 steps} \} \\
\{ <M> \mid M \text{ runs in at least 374 steps} \} \\
\{ <M> \mid M \text{ has 374 states} \} \\
\{ <M> \mid M \text{ moves head left} \}
\end{cases}
\]