Universal Turing Machines & Church-Turing Thesis & Undecidability
TM recap

- DFA with (infinite) tape.
- One move: read, write, move, change state.
Transition Function

\[\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\} \]

from state \(q \), on reading \(a \):
- go to state \(p \)
- write \(b \)
- move head Left

\[\delta(q,a) = (p, b, L) \]
Example/Refresher

TM that adds two unary numbers.

7 + 4: $\underline{0}0000000#0000$ initial tape contents

= 11: $\underline{0}000000000000$ final tape contents

Strategy?
• go right to first blank, turning # into 0
• back up one cell, erase 0
• return to first cell
Example/Refresher

7 + 4: $0000000#0000 \text{ initial tape contents}$

Strategy?
• go right to first blank, turning # into 0
 \[\delta(q_0,0) = (q_0,0,R) \]
 \[\delta(q_0,#) = (q_0,0,R) \]
• back up one cell, erase 0
 \[\delta(q_0,B) = (q_1,B,L) \]
 \[\delta(q_1,0) = (q_2,B,L) \]
• return to first cell
 \[\delta(q_2,0) = (q_2,0,L) \]
 \[\delta(q_2,\$) = (q_{\text{halt}},\$,R) \]
TM programming tricks

• checking off symbols
• shifting over
• using finite control memory
• subroutine calls

TM “extensions”

• 2-way infinite tape
• multiple tracks
• multiple tapes
Special purpose machines?

- Different DFA for different languages (duh)
- Different TMs for different languages, functions.
- Early computer programming was no different
Von Neumann Architecture

- stored-program computer
 - programs can be data!
 - program-as-data determines subcircuits to employ
- fetch-decode-execute cycle
- hence, one computer can behave like any

Original Idea was due to Turing

“I know that in or about 1943 or '44 von Neumann was well aware of the fundamental importance of Turing's paper of 1936 ... Von Neumann introduced me to that paper and at his urging I studied it with care. Many people have acclaimed von Neumann as the "father of the computer" (in a modern sense of the term) but I am sure that he would never have made that mistake himself. He might well be called the midwife, perhaps, but he firmly emphasized to me, and to others I am sure, that the fundamental conception is owing to Turing—in so far as not anticipated by Babbage... “

- Stan Frankel – Los Alamos
Universal TM

- A single TM M_u that can compute anything computable!
- Takes as input
 - the description of some other TM M
 - data w for M to run on
- Outputs
 - the results of running $M(w)$

Need to make precise what the description of a TM is
Coding of TMs

• Show how to represent every TM as a natural number
• **Lemma**: If L over alphabet $\{0,1\}$ is accepted by some TM M, then there is a one-tape TM M' that accepts L, such that
 – $\Gamma = \{0,1,B\}$
 – states numbered $1, \ldots, k$
 – q_1 is the unique start state
 – q_2 is the unique halt/accept state
 – q_3 is the unique halt/reject state
• So, to represent a TM, we need only list its set of transitions – everything else is implicit by above
Listing Transition

• Use the following order:
 \[\delta(q_1,0), \delta(q_1,1), \delta(q_1,B), \delta(q_2,0), \delta(q_2,1), \delta(q_2,B), \ldots \]
 \[\ldots \delta(q_k,0), \delta(q_k,1), \delta(q_k,B). \]

• Use the following encoding:
 \[111 \ t_1 \ 11 \ t_2 \ 11 \ t_3 \ 11 \ \ldots \ 11 \ t_{3k} \ 111 \]
 where \(t_i \) is the encoding of transition \(i \) as given on the next slide.
Encoding a transition

Recall transition looks like \(\delta(q,a) = (p, b, L) \)

So, encode as

\[
\text{<state> 1 <input> 1 <new state> 1 <new-symbol> 1 <direction>}
\]

where

- state \(q_i \) represented by \(0^i \)
- \(0, 1, B \) represented by \(0, 00, 000 \)
- \(L, R, S \) represented by \(0, 00, 000 \)

\[\delta(q_3, 1) = (q_4, 0, R) \]

represented by \(\cdots 0001001000010100 \)

\[
\begin{array}{c}
q_3 \\
1 \\
q_4 \\
0 \\
R
\end{array}
\]
Typical TM code:

```
11101010000100100110100100000101011.....11......11......11.....111
```

- Begins, ends with **111**
- Transitions separated by **11**
- Fields within transition separated by **1**
- Individual fields represented by 0s
TM are (binary) numbers

- Every TM is encoded by a unique element of \mathbb{N}
- Convention: elements of \mathbb{N} that do not correspond to any TM encoding represent the “null TM” that accepts nothing.
- Thus, every TM is a number, and vice versa
- Let $<M>$ mean the number that encodes M
- Conversely, let M_n be the TM with encoding n.
Universal TM M_u

Construct a TM M_u such that

$$L(M_u) = \{ <M> \# w \mid M \text{ accepts } w \}$$

Thus, M_u is a stored-program computer.

It reads a program $<M>$ and executes it on data w

M_u simulates the run of M on w

A single TM captures the notion of “computable”!!
How M_u works

3 tapes

- Tape 1: holds input M and w; never changes
- Tape 2: simulates M’s single tape
- Tape 3: holds M’s current state

```
1 1 1 t_1 1 1 t_2 1 1 ... t_{3k} 1 1 1 # w
```

Input M

Input w
Universal TM M_u

Phase 1: Check if $<M>$ is a valid TM on tape 1
- No four 1’s in a row
- Three initial, ending 1’s
- Substring 110^i10^j1 doesn’t appear twice
- Appropriate number of 0’s between 1’s in transition codes: $11000010100000100001\ldots$
 - (0000 does not encode a 0, 1, or B to write)
- Could check that transitions are in right order, and form a complete set (but not necessary)
- Etc.

If not valid, then halt and reject
Phase 2: Set up

- copy w to tape 2, with head scanning first symbol
- write 0 on tape 3 indicating M is in start state q_1

Tape 1

\[
\begin{array}{c}
11101010000100100110100100000101011\ldots111 \# 100110 \\
\end{array}
\]

Code for M

Tape 2

\[
\begin{array}{c}
\underline{100110} \\
\end{array}
\]

Current contents of M’s tape

Tape 3

\[
\begin{array}{c}
\underline{0} \\
\end{array}
\]

Current state of M

If at any time, Tape 3 holds 00 (or 000), then halt and accept (or reject)
Phase 3: Repeatedly simulate steps of M

Where in code is next transition?

<table>
<thead>
<tr>
<th>Tape 1</th>
<th>Tape 2</th>
<th>Tape 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>11101010000100100110100100000101001111111111110 # 100110</td>
<td>100110</td>
<td>0</td>
</tr>
</tbody>
</table>

Current contents of M’s tape

Current state of M

Code for M

If tape 3 holds 0^i and tape 2 is scanning 1, then search for substring 110^i1001 on tape 1
Phase 3: After the single move

Tape 1

```
1110101000010010011010010000010100111......111 # 100110
```

Tape 2

```
$000110
```

Tape 3

```
$00000
```

Check if 00 or 000 is on tape 3; if so, halt and accept or reject

Otherwise, simulate the next move by searching for pattern.

In this example, the next pattern = 11000000101
Exercise

• Show how UTM on input $<M>\#w\#t$ where t is a binary number simulates M on w for t time steps

• Is quite useful in simulating
 – Multiple machines in parallel
 – Dovetailing
 – Etc
Towards “real” computers: RAMs

Random Access Machine:
• finite number of arithmetic registers
• infinite number of memory locations
• instruction set (next page)
• program instructions written in continuous block of memory starting at location 1 and all registers set to 0.
RAM instruction set

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add X, Y</td>
<td>Add contents of register X and Y, and place result in register X</td>
</tr>
<tr>
<td>LOADC X, num</td>
<td>Place constant num in register X</td>
</tr>
<tr>
<td>LOAD X, M</td>
<td>Put contents of memory loc M into register X</td>
</tr>
<tr>
<td>LOADI X, M</td>
<td>Indirect addressing: put value(value(M)) into register X</td>
</tr>
<tr>
<td>STORE X, M</td>
<td>Copy contents of reg X into mem location M</td>
</tr>
<tr>
<td>JUMP X, M</td>
<td>If register X = 0, then next instruction is at memory location M (otherwise, next instruction is the one following the current one, as usual)</td>
</tr>
<tr>
<td>HALT</td>
<td>Halt (duh)</td>
</tr>
</tbody>
</table>
TMso can simulate RAMs

- Can write a “TM-interpreter” of RAM code
 Thus, no more TM programming.
- Actual simulation has low overhead (though memory is not random-access).
TM tapes

• Instruction-location tape
 – stores memory location where next instruction is
 – initially contains only “1”

• Register tape
 – stores register numbers and their contents, as
 follows: # <reg-num> # <contents> # .. etc.
 – Example: suppose R1 has 11, and R4 has 101, and
 all other registers are empty. Then register tape:

 $ # 1 , 1 1 # 1 0 0 , 1 0 1 # . . .
TM tapes

- Memory tape – similar to register tape, but can hold numbers, OR instructions:
 - numbers: # <mem-location>, <value> # ...
 - instructions:

 example: mem location 101 holds ADD 3, 6

- 5 work tapes
TM setup

- Blank register tape
- Memory tape holds RAM program, starting at memory location 1. No other data stored.
- 1 on instruction-location tape
TM step overview

(many TM steps for each RAM step)

- Read instruction-location tape
- search memory tape for the instruction
- execute the instruction, changing register and memory tapes as needed
- update the location-instruction tape

In other words, it goes through a fetch-decode-execute cycle
Example

• Suppose instruction location tape holds only:

```
$ 1 0 1
```

• Scan memory tape, looking for “# 1 0 1 ,” Suppose it finds

```
. . # 1 0 1 , A D D , 1 1 , 1 1 0 #
```

• It finds “ADD” following “,” and switches to special state q_{add} to handle the addition
Example (cont.)

- first argument is in register 11 so search register tape for:

- then copy <bitstring> to worktape 1

- similarly, search for, find, place value of register 110 onto worktape 2
Example (cont.)

• Now go to subroutine to add worktape 1 + worktape 2, place results on worktape 3.
• Result must go back into register 11
• Search register tape again for

<table>
<thead>
<tr>
<th></th>
<th>#</th>
<th>1</th>
<th>1</th>
<th>,</th>
<th><bitstring></th>
</tr>
</thead>
</table>

• Replace <bitstring> with new value copied from worktape 3, shifting as necessary
• Add 1 to instruction-location tape
RAM simulation

• MANY details left out
• Other types of instructions are similar
• Number of steps to simulate RAM?
• Delicate issue.... does RAM actually have constant-time access to infinite memory?
• Can show (beyond this course) for “reasonable” time model on a RAM, if $T(n)$ steps are required, then on a TM, only $T(n)^2$ steps. ($T(n)^3$ if RAM has mult. and div.)
Church-Turing thesis

- TMs capture notion of “computable”
- Evidence
 - RAM computer
 - general recursive functions (Gödel & Herbrand)
 - constant/projection/successor/composition/recursion
 - λ-calculus (Church) for defining functions (CS 421)
 - general string-rewriting-system
 - unrestricted grammar, productions of form $\alpha \rightarrow \beta$ for any α and β
 - attempts to extend TMs

All give you exactly the TM-computable functions
Undecidability

- Can a Turing Machine Compute anything?
 No

- Some problems are undecidable!
- E.g. Halting Problem
Halting Problem

• Given a program M and a string w, does M halt when started on w?

No Algorithm to Solve This Problem

• Any program can be computed by a Turing machine M.

$$L_{\text{Halt}} = \{ \langle M \rangle \# w \mid \text{Turing Machine } M \text{ halts on input } w \}$$
Halting Problem

\[L_{\text{Halt}} = \{ <M> \#w \mid \text{Turing Machine } M \text{ halts on input } w \} \]

- **Theorem:** \(L_{\text{Halt}} \) is not recursive i.e. undecidable.

- **Recursive Languages** (also called “decidable”)
 \[= \{ L \mid \text{there is a TM } M' \text{ that halts for all } w \text{ in } \Sigma^* \text{ and such that } L(M') = L \} \]
Halting Problem

\[L_{\text{Halt}} = \{ < M > \#w \mid \text{Turing Machine } M \text{ halts on input } w \} \]

- **Theorem:** \(L_{\text{Halt}} \) is not recursive i.e. undecidable.

- **Proof: By Contradiction**

Suppose there is some Turing Machine \(M_0 \) that halts for all \(x \ in \Sigma^* \) and accepts if \(x \ in L_{\text{Halt}} \)

Counterexample: \(<M_{\text{bad}}>\#w_{\text{bad}} \)

There is some program (TM) \(M_{\text{bad}} \) and string \(w_{\text{bad}} \) such that \(M_0 \) accepts \(<M_{\text{bad}}>\#w_{\text{bad}} \) even if \(M_{\text{bad}} \) does not halt on \(w_{\text{bad}} \) and rejects \(<M_{\text{bad}}>\#w_{\text{bad}} \) even if \(M_{\text{bad}} \) halts on \(w_{\text{bad}} \) .
Halting Problem

\[L_{Halt} = \{ <M> \#w \mid \text{Turing Machine } M \text{ halts on input } w \} \]

- **Theorem:** \(L_{Halt} \) is not recursive i.e. undecidable.

- **Proof: By Contradiction**

 \(M_{bad} : \)

 Takes input \(<M> \).

 Runs \(M_0 \) on input \(<M>\#<M> \)

 If \(M_0 \) accepts,

 go to infinite loop

 else

 halt.

 \(w_{bad} : <M_{bad}> \)

 \(<M_{bad}>\#<M_{bad}> \)

 Case 1: \(M_0 \) accepts \(<M_{bad}>\#w_{bad} \) i.e. halts

 \(M_{bad} \) on input \(<M_{bad}> \) goes to infinite loop

 \(\rightarrow M_0 \) is wrong!

 Case 2: \(M_0 \) rejects \(<M_{bad}>\#w_{bad} \) i.e. doesn’t halt

 \(M_{bad} \) on input \(<M_{bad}> \) halts \(\rightarrow M_0 \) is wrong!