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NFA Introduction
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Non-deterministic Finite State Automata (NFAs)

qε qp

 0,1  0,1 

q0
 0 q00

 0 
 ε 

 1 

Differences from DFA

From state q on same letter a ∈ Σ multiple possible states

No transitions from q on some letters

ε-transitions!

Questions:

Is this a “real” machine?

What does it do?
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NFA behavior
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Machine on input string w from state q can lead to set of states
(could be empty)

From qε on 1

From qε on 0

From q0 on ε

From qε on 01

From q00 on 00

Chan, Har-Peled, Hassanieh (UIUC) CS374 4 Spring 2019 4 / 45



NFA behavior

qε qp

 0,1  0,1 

q0
 0 q00

 0 
 ε 

 1 

Machine on input string w from state q can lead to set of states
(could be empty)

From qε on 1

From qε on 0

From q0 on ε

From qε on 01

From q00 on 00

Chan, Har-Peled, Hassanieh (UIUC) CS374 4 Spring 2019 4 / 45



NFA behavior

qε qp

 0,1  0,1 

q0
 0 q00

 0 
 ε 

 1 

Machine on input string w from state q can lead to set of states
(could be empty)

From qε on 1

From qε on 0

From q0 on ε

From qε on 01

From q00 on 00

Chan, Har-Peled, Hassanieh (UIUC) CS374 4 Spring 2019 4 / 45




































NFA behavior

qε qp

 0,1  0,1 

q0
 0 q00

 0 
 ε 

 1 

Machine on input string w from state q can lead to set of states
(could be empty)

From qε on 1

From qε on 0

From q0 on ε

From qε on 01

From q00 on 00

Chan, Har-Peled, Hassanieh (UIUC) CS374 4 Spring 2019 4 / 45



























NFA behavior

qε qp

 0,1  0,1 

q0
 0 q00

 0 
 ε 

 1 

Machine on input string w from state q can lead to set of states
(could be empty)

From qε on 1

From qε on 0

From q0 on ε

From qε on 01

From q00 on 00

Chan, Har-Peled, Hassanieh (UIUC) CS374 4 Spring 2019 4 / 45




























































NFA behavior

qε qp

 0,1  0,1 

q0
 0 q00

 0 
 ε 

 1 

Machine on input string w from state q can lead to set of states
(could be empty)

From qε on 1

From qε on 0

From q0 on ε

From qε on 01

From q00 on 00

Chan, Har-Peled, Hassanieh (UIUC) CS374 4 Spring 2019 4 / 45









NFA acceptance: informal

qε qp
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Informal definition: An NFA N accepts a string w iff some
accepting state is reached by N from the start state on input w .

The language accepted (or recognized) by a NFA N is denote by
L(N) and defined as: L(N) = {w | N accepts w}.
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NFA acceptance: example

qε qp

 0,1  0,1 

q0
 0 q00

 0 
 ε 

 1 

Is 01 accepted?

Is 001 accepted?

Is 100 accepted?

Are all strings in 1∗01 accepted?

What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string
is accepted than to show that a string is not accepted.
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Simulating NFA
Example the first

(N1) A B C D E

a,b

a b a b

a,b

Run it on input ababa.
Idea: Keep track of the states where the NFA might be at any given
time.
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Simulating NFA
Example the first

t = 0:

A B C D E

a,b

a b a b

a,b

Remaining input: ababa.
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a,b

Remaining input: aba.
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Simulating NFA
Example the first

t = 3:

A B C D E

a,b

a b a b

a,b
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Simulating NFA
Example the first

t = 3:

A B C D E

a,b

a b a b

a,b

Remaining input: ba.

t = 4:

A B C D E

a,b

a b a b

a,b
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Simulating NFA
Example the first

t = 4:

A B C D E

a,b

a b a b

a,b

Remaining input: a.
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Simulating NFA
Example the first

t = 4:

A B C D E

a,b

a b a b

a,b

Remaining input: a.

t = 5:

A B C D E

a,b

a b a b

a,b

Remaining input: ε.
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Simulating NFA
Example the first

t = 5:

A B C D E

a,b

a b a b

a,b

Remaining input: ε.

Accepts: ababa.
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Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q,Σ, δ, s,A) is
a five tuple where

Q is a finite set whose elements are called states,

Σ is a finite set called the input alphabet,

δ : Q × Σ ∪ {ε} → P(Q) is the transition function (here
P(Q) is the power set of Q),

s ∈ Q is the start state,

A ⊆ Q is the set of accepting/final states.

δ(q, a) for a ∈ Σ ∪ {ε} is a subset of Q — a set of states.
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Reminder: Power set

For a set Q its power set is: P(Q) = 2Q = {X | X ⊆ Q} is the
set of all subsets of Q.

Example

Q = {1, 2, 3, 4}

P(Q) =


{1, 2, 3, 4} ,

{2, 3, 4} , {1, 3, 4} , {1, 2, 4} , {1, 2, 3} ,
{1, 2} , {1, 3} , {1, 4} , {2, 3} , {2, 4} , {3, 4} ,

{1} , {2} , {3} , {4} ,
{}


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Example

qε qp
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 0 q00
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 1 

Q =

{qε, q0, q00, qp}
Σ = {0, 1}
δ

s = qε
A = {qp}
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Example
Transition function in detail...

qε qp
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δ(qε, ε) =

δ(qε, 0) =

δ(qε, 1) =

δ(q0, ε) =

δ(q0, 0) =

δ(q0, 1) =

δ(q00, ε) =

δ(q00, 0) =

δ(q00, 1) =

δ(qp, ε) =

δ(qp, 0) =

δ(qp, 1) =
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Example
Transition function in detail...

qε qp

 0,1  0,1 

q0
 0 q00

 0 
 ε 

 1 

δ(qε, ε) = {qε}
δ(qε, 0) = {qε, q0}
δ(qε, 1) = {qε}

δ(q0, ε) = {q0, q00}
δ(q0, 0) = {q00}
δ(q0, 1) = {}

δ(q00, ε) = {q00}
δ(q00, 0) = {}
δ(q00, 1) = {qp}

δ(qp, ε) = {qp}
δ(qp, 0) = {qp}
δ(qp, 1) = {qp}
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Extending the transition function to strings

1 NFA N = (Q,Σ, δ, s,A)

2 δ(q, a): set of states that N can go to from q on reading
a ∈ Σ ∪ {ε}.

3 Want transition function δ∗ : Q × Σ∗ → P(Q)

4 δ∗(q,w): set of states reachable on input w starting in state q.
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Extending the transition function to strings

Definition
For NFA N = (Q,Σ, δ, s,A) and q ∈ Q the εreach(q) is the set
of all states that q can reach using only ε-transitions.

Models of Computation Lecture �: Nondeterministic Automata [Fa’��]

the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this
metaphor is that if an NFA reads a string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as
a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at c, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product ⌃⇥⌦ of an input alphabet ⌃ and an oracle alphabet ⌦.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string !. In either formulation, the transition function
has the form � : Q⇥ (⌃⇥⌦)! Q. As usual, this DFA accepts the pair (w,!) 2 (⌃⇥⌦)⇤ if and
only if �⇤(s, (w,!)) 2 A. Finally, M nondeterministically accepts the string w 2 ⌃⇤ if there is
an oracle string ! 2 ⌦⇤ with |!|= |w| such that (w,!) 2 L(M).

�.� "-Transitions

It is fairly common for NFAs to include so-called "-transitions, which allow the machine to
change state without reading an input symbol. An NFA with "-transitions accepts a string w
if and only if there is a sequence of transitions s

a1�! q1
a2�! q2

a3�! · · · a`�! q` where the final
state q` is accepting, each ai is either " or a symbol in ⌃, and a1a2 · · · a` = w.

For example, consider the following NFA with "-transitions. (For this example, we indicate
the "-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has
more "-transitions than necessary.

0 0

1 1

1,0 1,0s

b

g

e
ε

ε

εε
ε

c

f

a

d
ε

An NFA with "-transitions

The NFA starts as usual in state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

s
1�! s

"�! d
"�! a

0�! b
0�! c

"�! d
1�! e

1�! f
"�! e

1�! f
"�! c

"�! g

More formally, the transition function in an NFA with "-transitions has a slightly larger
domain � : Q⇥ (⌃[ {"})! 2Q. The "-reach of a state q 2Q consists of all states r that satisfy
one of the following conditions:

• either r = q,

• or r 2 �(q0,") for some state q0 in the "-reach of q.

In other words, r is in the "-reach of q if there is a (possibly empty) sequence of "-transitions
leading from q to r. For example, in the example NFA above, the "-reach of state f is {a, c, d, f , g}.

�

Chan, Har-Peled, Hassanieh (UIUC) CS374 14 Spring 2019 14 / 45











































































Extending the transition function to strings

Definition
For NFA N = (Q,Σ, δ, s,A) and q ∈ Q the εreach(q) is the set
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a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at c, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product ⌃⇥⌦ of an input alphabet ⌃ and an oracle alphabet ⌦.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string !. In either formulation, the transition function
has the form � : Q⇥ (⌃⇥⌦)! Q. As usual, this DFA accepts the pair (w,!) 2 (⌃⇥⌦)⇤ if and
only if �⇤(s, (w,!)) 2 A. Finally, M nondeterministically accepts the string w 2 ⌃⇤ if there is
an oracle string ! 2 ⌦⇤ with |!|= |w| such that (w,!) 2 L(M).

�.� "-Transitions

It is fairly common for NFAs to include so-called "-transitions, which allow the machine to
change state without reading an input symbol. An NFA with "-transitions accepts a string w
if and only if there is a sequence of transitions s

a1�! q1
a2�! q2

a3�! · · · a`�! q` where the final
state q` is accepting, each ai is either " or a symbol in ⌃, and a1a2 · · · a` = w.

For example, consider the following NFA with "-transitions. (For this example, we indicate
the "-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has
more "-transitions than necessary.
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An NFA with "-transitions

The NFA starts as usual in state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

s
1�! s

"�! d
"�! a

0�! b
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"�! d
1�! e
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"�! e
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"�! c

"�! g

More formally, the transition function in an NFA with "-transitions has a slightly larger
domain � : Q⇥ (⌃[ {"})! 2Q. The "-reach of a state q 2Q consists of all states r that satisfy
one of the following conditions:

• either r = q,

• or r 2 �(q0,") for some state q0 in the "-reach of q.

In other words, r is in the "-reach of q if there is a (possibly empty) sequence of "-transitions
leading from q to r. For example, in the example NFA above, the "-reach of state f is {a, c, d, f , g}.

�
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Extending the transition function to strings

Definition
For NFA N = (Q,Σ, δ, s,A) and q ∈ Q the εreach(q) is the set
of all states that q can reach using only ε-transitions.

Definition
Inductive definition of δ∗ : Q × Σ∗ → P(Q):

if w = ε, δ∗(q,w) = εreach(q)

if w = a where a ∈ Σ
δ∗(q, a) = ∪p∈εreach(q)(∪r∈δ(p,a)εreach(r))

if w = ax ,
δ∗(q,w) = ∪p∈εreach(q)(∪r∈δ(p,a)δ

∗(r , x))
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Formal definition of language accepted by N

Definition
A string w is accepted by NFA N if δ∗N(s,w) ∩ A 6= ∅.

Definition
The language L(N) accepted by a NFA N = (Q,Σ, δ, s,A) is

{w ∈ Σ∗ | δ∗(s,w) ∩ A 6= ∅}.

Important: Formal definition of the language of NFA above uses δ∗

and not δ. As such, one does not need to include ε-transitions
closure when specifying δ, since δ∗ takes care of that.
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Example

Models of Computation Lecture �: Nondeterministic Automata [Fa’��]

the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this
metaphor is that if an NFA reads a string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as
a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at c, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product ⌃⇥⌦ of an input alphabet ⌃ and an oracle alphabet ⌦.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string !. In either formulation, the transition function
has the form � : Q⇥ (⌃⇥⌦)! Q. As usual, this DFA accepts the pair (w,!) 2 (⌃⇥⌦)⇤ if and
only if �⇤(s, (w,!)) 2 A. Finally, M nondeterministically accepts the string w 2 ⌃⇤ if there is
an oracle string ! 2 ⌦⇤ with |!|= |w| such that (w,!) 2 L(M).

�.� "-Transitions

It is fairly common for NFAs to include so-called "-transitions, which allow the machine to
change state without reading an input symbol. An NFA with "-transitions accepts a string w
if and only if there is a sequence of transitions s

a1�! q1
a2�! q2

a3�! · · · a`�! q` where the final
state q` is accepting, each ai is either " or a symbol in ⌃, and a1a2 · · · a` = w.

For example, consider the following NFA with "-transitions. (For this example, we indicate
the "-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has
more "-transitions than necessary.

0 0

1 1

1,0 1,0s

b

g

e
ε

ε

εε
ε

c

f

a

d
ε

An NFA with "-transitions

The NFA starts as usual in state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

s
1�! s

"�! d
"�! a

0�! b
0�! c

"�! d
1�! e

1�! f
"�! e

1�! f
"�! c

"�! g

More formally, the transition function in an NFA with "-transitions has a slightly larger
domain � : Q⇥ (⌃[ {"})! 2Q. The "-reach of a state q 2Q consists of all states r that satisfy
one of the following conditions:

• either r = q,

• or r 2 �(q0,") for some state q0 in the "-reach of q.

In other words, r is in the "-reach of q if there is a (possibly empty) sequence of "-transitions
leading from q to r. For example, in the example NFA above, the "-reach of state f is {a, c, d, f , g}.

�

What is:

δ∗(s, ε)

δ∗(s, 0)

δ∗(c, 0)

δ∗(b, 00)
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δ∗(s, ε)
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δ∗(b, 00)
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δ∗(b, 00)
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Another definition of computation

Definition

q w−→N p: State p of NFA N is reachable from q on w ⇐⇒
there exists a sequence of states r0, r1, . . . , rk and a sequence
x1, x2, . . . , xk where xi ∈ Σ ∪ {ε}, for each i , such that:

r0 = q,

for each i , ri+1 ∈ δ(ri , xi+1),

rk = p, and

w = x1x2x3 · · · xk .

Definition

δ∗N(q,w) =
{
p ∈ Q

∣∣∣ q w−→N p
}

.
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Why non-determinism?

Non-determinism adds power to the model; richer programming
language and hence (much) easier to “design” programs

Fundamental in theory to prove many theorems

Very important in practice directly and indirectly

Many deep connections to various fields in Computer Science
and Mathematics

Many interpretations of non-determinism. Hard to understand at the
outset. Get used to it and then you will appreciate it slowly.
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Part II

Constructing NFAs
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DFAs and NFAs

Every DFA is a NFA so NFAs are at least as powerful as
DFAs.

NFAs prove ability to “guess and verify” which simplifies design
and reduces number of states

Easy proofs of some closure properties
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Example

Strings that represent decimal numbers.

0 21
.ε, –

53

4

.

0 0,1,2,...,9

1,2,...,9

0,1,2,...,9

0,1,2,...,9
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Example

{strings that contain CS374 as a substring}

{strings that contain CS374 or CS473 as a substring}
{strings that contain CS374 and CS473 as substrings}
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Example

{strings that contain CS374 as a substring}
{strings that contain CS374 or CS473 as a substring}
{strings that contain CS374 and CS473 as substrings}
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Example

Lk = {bitstrings that have a 1 k positions from the end}
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A simple transformation

Theorem
For every NFA N there is another NFA N ′ such that
L(N) = L(N ′) and such that N ′ has the following two properties:

N ′ has single final state f that has no outgoing transitions

The start state s of N is different from f
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Part III

Closure Properties of NFAs
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Closure properties of NFAs

Are the class of languages accepted by NFAs closed under the
following operations?

union

intersection

concatenation

Kleene star

complement
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Closure under union

Theorem
For any two NFAs N1 and N2 there is a NFA N such that
L(N) = L(N1) ∪ L(N2).

q1 f1N1

q2 f2N2
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Closure under concatenation

Theorem
For any two NFAs N1 and N2 there is a NFA N such that
L(N) = L(N1)·L(N2).

q1 f1N1 q2 f2N2
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Closure under concatenation

Theorem
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Closure under Kleene star

Theorem
For any NFA N1 there is a NFA N such that L(N) = (L(N1))∗.

q1 f1N1
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Closure under Kleene star

Theorem
For any NFA N1 there is a NFA N such that L(N) = (L(N1))∗.

q1 f1N1

ε
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Closure under Kleene star

Theorem
For any NFA N1 there is a NFA N such that L(N) = (L(N1))∗.

q1 f1N1

ε

Does not work! Why?
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Closure under Kleene star

Theorem
For any NFA N1 there is a NFA N such that L(N) = (L(N1))∗.

q1 f1N1q0
ε

ε
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Part IV

NFAs capture Regular Languages
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Regular Languages Recap

Regular Languages Regular Expressions

∅ regular ∅ denotes ∅
{ε} regular ε denotes {ε}
{a} regular for a ∈ Σ a denote {a}
R1 ∪ R2 regular if both are r1 + r2 denotes R1 ∪ R2

R1R2 regular if both are r1r2 denotes R1R2

R∗ is regular if R is r∗ denote R∗

Regular expressions denote regular languages — they explicitly show
the operations that were used to form the language
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NFAs and Regular Language

Theorem
For every regular language L there is an NFA N such that
L = L(N).

Proof strategy:

For every regular expression r show that there is a NFA N such
that L(r) = L(N)

Induction on length of r
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NFAs and Regular Language

For every regular expression r show that there is a NFA N such
that L(r) = L(N)

Induction on length of r

Base cases: ∅, {ε}, {a} for a ∈ Σ.
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NFAs and Regular Language

For every regular expression r show that there is a NFA N such
that L(r) = L(N)

Induction on length of r

Inductive cases:

r1, r2 regular expressions and r = r1 + r2.

By induction there are NFAs N1,N2 s.t
L(N1) = L(r1) and L(N2) = L(r2). We have already seen that
there is NFA N s.t L(N) = L(N1) ∪ L(N2), hence
L(N) = L(r)

r = r1·r2. Use closure of NFA languages under concatenation

r = (r1)∗. Use closure of NFA languages under Kleene star
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r = (r1)∗. Use closure of NFA languages under Kleene star

Chan, Har-Peled, Hassanieh (UIUC) CS374 39 Spring 2019 39 / 45



NFAs and Regular Language

For every regular expression r show that there is a NFA N such
that L(r) = L(N)

Induction on length of r

Inductive cases:

r1, r2 regular expressions and r = r1 + r2.
By induction there are NFAs N1,N2 s.t
L(N1) = L(r1) and L(N2) = L(r2). We have already seen that
there is NFA N s.t L(N) = L(N1) ∪ L(N2), hence
L(N) = L(r)

r = r1·r2. Use closure of NFA languages under concatenation

r = (r1)∗.

Use closure of NFA languages under Kleene star

Chan, Har-Peled, Hassanieh (UIUC) CS374 39 Spring 2019 39 / 45



NFAs and Regular Language

For every regular expression r show that there is a NFA N such
that L(r) = L(N)

Induction on length of r

Inductive cases:

r1, r2 regular expressions and r = r1 + r2.
By induction there are NFAs N1,N2 s.t
L(N1) = L(r1) and L(N2) = L(r2). We have already seen that
there is NFA N s.t L(N) = L(N1) ∪ L(N2), hence
L(N) = L(r)

r = r1·r2. Use closure of NFA languages under concatenation

r = (r1)∗. Use closure of NFA languages under Kleene star

Chan, Har-Peled, Hassanieh (UIUC) CS374 39 Spring 2019 39 / 45



Example

(ε+0)(1+10)*

(ε+0) (1+10)*

ε

0
(1+10) *
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Example
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ε

Final NFA simplified slightly to reduce states
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