
Algorithms & Models of Computation
CS/ECE 374, Spring 2019

Non-deterministic Finite
Automata (NFAs)
Lecture 4
Thursday, January 24, 2019

LATEXed: January 24, 2019 16:37

Chan, Har-Peled, Hassanieh (UIUC) CS374 1 Spring 2019 1 / 45

Part I

NFA Introduction

Chan, Har-Peled, Hassanieh (UIUC) CS374 2 Spring 2019 2 / 45

Non-deterministic Finite State Automata (NFAs)

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Differences from DFA

From state q on same letter a ∈ Σ multiple possible states

No transitions from q on some letters

ε-transitions!

Questions:

Is this a “real” machine?

What does it do?

Chan, Har-Peled, Hassanieh (UIUC) CS374 3 Spring 2019 3 / 45

Non-deterministic Finite State Automata (NFAs)

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Differences from DFA

From state q on same letter a ∈ Σ multiple possible states

No transitions from q on some letters

ε-transitions!

Questions:

Is this a “real” machine?

What does it do?

Chan, Har-Peled, Hassanieh (UIUC) CS374 3 Spring 2019 3 / 45

Non-deterministic Finite State Automata (NFAs)

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Differences from DFA

From state q on same letter a ∈ Σ multiple possible states

No transitions from q on some letters

ε-transitions!

Questions:

Is this a “real” machine?

What does it do?

Chan, Har-Peled, Hassanieh (UIUC) CS374 3 Spring 2019 3 / 45

NFA behavior

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Machine on input string w from state q can lead to set of states
(could be empty)

From qε on 1

From qε on 0

From q0 on ε

From qε on 01

From q00 on 00

Chan, Har-Peled, Hassanieh (UIUC) CS374 4 Spring 2019 4 / 45

NFA behavior

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Machine on input string w from state q can lead to set of states
(could be empty)

From qε on 1

From qε on 0

From q0 on ε

From qε on 01

From q00 on 00

Chan, Har-Peled, Hassanieh (UIUC) CS374 4 Spring 2019 4 / 45

NFA behavior

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Machine on input string w from state q can lead to set of states
(could be empty)

From qε on 1

From qε on 0

From q0 on ε

From qε on 01

From q00 on 00

Chan, Har-Peled, Hassanieh (UIUC) CS374 4 Spring 2019 4 / 45

NFA behavior

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Machine on input string w from state q can lead to set of states
(could be empty)

From qε on 1

From qε on 0

From q0 on ε

From qε on 01

From q00 on 00

Chan, Har-Peled, Hassanieh (UIUC) CS374 4 Spring 2019 4 / 45

NFA behavior

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Machine on input string w from state q can lead to set of states
(could be empty)

From qε on 1

From qε on 0

From q0 on ε

From qε on 01

From q00 on 00

Chan, Har-Peled, Hassanieh (UIUC) CS374 4 Spring 2019 4 / 45

NFA behavior

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Machine on input string w from state q can lead to set of states
(could be empty)

From qε on 1

From qε on 0

From q0 on ε

From qε on 01

From q00 on 00

Chan, Har-Peled, Hassanieh (UIUC) CS374 4 Spring 2019 4 / 45

NFA acceptance: informal

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Informal definition: An NFA N accepts a string w iff some
accepting state is reached by N from the start state on input w .

The language accepted (or recognized) by a NFA N is denote by
L(N) and defined as: L(N) = {w | N accepts w}.

Chan, Har-Peled, Hassanieh (UIUC) CS374 5 Spring 2019 5 / 45

NFA acceptance: informal

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Informal definition: An NFA N accepts a string w iff some
accepting state is reached by N from the start state on input w .

The language accepted (or recognized) by a NFA N is denote by
L(N) and defined as: L(N) = {w | N accepts w}.

Chan, Har-Peled, Hassanieh (UIUC) CS374 5 Spring 2019 5 / 45

NFA acceptance: example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Is 01 accepted?

Is 001 accepted?

Is 100 accepted?

Are all strings in 1∗01 accepted?

What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string
is accepted than to show that a string is not accepted.

Chan, Har-Peled, Hassanieh (UIUC) CS374 6 Spring 2019 6 / 45

NFA acceptance: example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Is 01 accepted?

Is 001 accepted?

Is 100 accepted?

Are all strings in 1∗01 accepted?

What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string
is accepted than to show that a string is not accepted.

Chan, Har-Peled, Hassanieh (UIUC) CS374 6 Spring 2019 6 / 45

NFA acceptance: example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Is 01 accepted?

Is 001 accepted?

Is 100 accepted?

Are all strings in 1∗01 accepted?

What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string
is accepted than to show that a string is not accepted.

Chan, Har-Peled, Hassanieh (UIUC) CS374 6 Spring 2019 6 / 45

NFA acceptance: example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Is 01 accepted?

Is 001 accepted?

Is 100 accepted?

Are all strings in 1∗01 accepted?

What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string
is accepted than to show that a string is not accepted.

Chan, Har-Peled, Hassanieh (UIUC) CS374 6 Spring 2019 6 / 45

NFA acceptance: example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Is 01 accepted?

Is 001 accepted?

Is 100 accepted?

Are all strings in 1∗01 accepted?

What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string
is accepted than to show that a string is not accepted.

Chan, Har-Peled, Hassanieh (UIUC) CS374 6 Spring 2019 6 / 45

NFA acceptance: example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Is 01 accepted?

Is 001 accepted?

Is 100 accepted?

Are all strings in 1∗01 accepted?

What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string
is accepted than to show that a string is not accepted.

Chan, Har-Peled, Hassanieh (UIUC) CS374 6 Spring 2019 6 / 45

NFA acceptance: example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Is 01 accepted?

Is 001 accepted?

Is 100 accepted?

Are all strings in 1∗01 accepted?

What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string
is accepted than to show that a string is not accepted.

Chan, Har-Peled, Hassanieh (UIUC) CS374 6 Spring 2019 6 / 45

Simulating NFA
Example the first

(N1) A B C D E

a,b

a b a b

a,b

Run it on input ababa.
Idea: Keep track of the states where the NFA might be at any given
time.

Chan, Har-Peled, Hassanieh (UIUC) CS374 7 Spring 2019 7 / 45

Simulating NFA
Example the first

t = 0:

A B C D E

a,b

a b a b

a,b

Remaining input: ababa.

Chan, Har-Peled, Hassanieh (UIUC) CS374 7 Spring 2019 7 / 45

Simulating NFA
Example the first

t = 0:

A B C D E

a,b

a b a b

a,b

Remaining input: ababa.

t = 1:

A B C D E

a,b

a b a b

a,b

Remaining input: baba.

Chan, Har-Peled, Hassanieh (UIUC) CS374 7 Spring 2019 7 / 45

Simulating NFA
Example the first

t = 1:

A B C D E

a,b

a b a b

a,b

Remaining input: baba.

Chan, Har-Peled, Hassanieh (UIUC) CS374 7 Spring 2019 7 / 45

Simulating NFA
Example the first

t = 1:

A B C D E

a,b

a b a b

a,b

Remaining input: baba.

t = 2:

A B C D E

a,b

a b a b

a,b

Remaining input: aba.

Chan, Har-Peled, Hassanieh (UIUC) CS374 7 Spring 2019 7 / 45

Simulating NFA
Example the first

t = 2:

A B C D E

a,b

a b a b

a,b

Remaining input: aba.

Chan, Har-Peled, Hassanieh (UIUC) CS374 7 Spring 2019 7 / 45

Simulating NFA
Example the first

t = 2:

A B C D E

a,b

a b a b

a,b

Remaining input: aba.

t = 3:

A B C D E

a,b

a b a b

a,b

Remaining input: ba.

Chan, Har-Peled, Hassanieh (UIUC) CS374 7 Spring 2019 7 / 45

Simulating NFA
Example the first

t = 3:

A B C D E

a,b

a b a b

a,b

Remaining input: ba.

Chan, Har-Peled, Hassanieh (UIUC) CS374 7 Spring 2019 7 / 45

Simulating NFA
Example the first

t = 3:

A B C D E

a,b

a b a b

a,b

Remaining input: ba.

t = 4:

A B C D E

a,b

a b a b

a,b

Remaining input: a.

Chan, Har-Peled, Hassanieh (UIUC) CS374 7 Spring 2019 7 / 45

Simulating NFA
Example the first

t = 4:

A B C D E

a,b

a b a b

a,b

Remaining input: a.

Chan, Har-Peled, Hassanieh (UIUC) CS374 7 Spring 2019 7 / 45

Simulating NFA
Example the first

t = 4:

A B C D E

a,b

a b a b

a,b

Remaining input: a.

t = 5:

A B C D E

a,b

a b a b

a,b

Remaining input: ε.

Chan, Har-Peled, Hassanieh (UIUC) CS374 7 Spring 2019 7 / 45

Simulating NFA
Example the first

t = 5:

A B C D E

a,b

a b a b

a,b

Remaining input: ε.

Accepts: ababa.

Chan, Har-Peled, Hassanieh (UIUC) CS374 7 Spring 2019 7 / 45

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q,Σ, δ, s,A) is
a five tuple where

Q is a finite set whose elements are called states,

Σ is a finite set called the input alphabet,

δ : Q × Σ ∪ {ε} → P(Q) is the transition function (here
P(Q) is the power set of Q),

s ∈ Q is the start state,

A ⊆ Q is the set of accepting/final states.

δ(q, a) for a ∈ Σ ∪ {ε} is a subset of Q — a set of states.

Chan, Har-Peled, Hassanieh (UIUC) CS374 8 Spring 2019 8 / 45

Reminder: Power set

For a set Q its power set is: P(Q) = 2Q = {X | X ⊆ Q} is the
set of all subsets of Q.

Example

Q = {1, 2, 3, 4}

P(Q) =


{1, 2, 3, 4} ,

{2, 3, 4} , {1, 3, 4} , {1, 2, 4} , {1, 2, 3} ,
{1, 2} , {1, 3} , {1, 4} , {2, 3} , {2, 4} , {3, 4} ,

{1} , {2} , {3} , {4} ,
{}



Chan, Har-Peled, Hassanieh (UIUC) CS374 9 Spring 2019 9 / 45

Example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Q =

{qε, q0, q00, qp}
Σ = {0, 1}
δ

s = qε
A = {qp}

Chan, Har-Peled, Hassanieh (UIUC) CS374 10 Spring 2019 10 / 45

Example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Q = {qε, q0, q00, qp}

Σ = {0, 1}
δ

s = qε
A = {qp}

Chan, Har-Peled, Hassanieh (UIUC) CS374 10 Spring 2019 10 / 45

Example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Q = {qε, q0, q00, qp}
Σ =

{0, 1}
δ

s = qε
A = {qp}

Chan, Har-Peled, Hassanieh (UIUC) CS374 10 Spring 2019 10 / 45

Example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Q = {qε, q0, q00, qp}
Σ = {0, 1}

δ

s = qε
A = {qp}

Chan, Har-Peled, Hassanieh (UIUC) CS374 10 Spring 2019 10 / 45

Example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Q = {qε, q0, q00, qp}
Σ = {0, 1}
δ

s = qε
A = {qp}

Chan, Har-Peled, Hassanieh (UIUC) CS374 10 Spring 2019 10 / 45

Example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Q = {qε, q0, q00, qp}
Σ = {0, 1}
δ

s =

qε
A = {qp}

Chan, Har-Peled, Hassanieh (UIUC) CS374 10 Spring 2019 10 / 45

Example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Q = {qε, q0, q00, qp}
Σ = {0, 1}
δ

s = qε

A = {qp}

Chan, Har-Peled, Hassanieh (UIUC) CS374 10 Spring 2019 10 / 45

Example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Q = {qε, q0, q00, qp}
Σ = {0, 1}
δ

s = qε
A =

{qp}

Chan, Har-Peled, Hassanieh (UIUC) CS374 10 Spring 2019 10 / 45

Example

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

Q = {qε, q0, q00, qp}
Σ = {0, 1}
δ

s = qε
A = {qp}

Chan, Har-Peled, Hassanieh (UIUC) CS374 10 Spring 2019 10 / 45

Example
Transition function in detail...

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

δ(qε, ε) =

δ(qε, 0) =

δ(qε, 1) =

δ(q0, ε) =

δ(q0, 0) =

δ(q0, 1) =

δ(q00, ε) =

δ(q00, 0) =

δ(q00, 1) =

δ(qp, ε) =

δ(qp, 0) =

δ(qp, 1) =

Chan, Har-Peled, Hassanieh (UIUC) CS374 11 Spring 2019 11 / 45

Example
Transition function in detail...

qε qp

 0,1 0,1

q0
 0 q00

 0
 ε

 1

δ(qε, ε) = {qε}
δ(qε, 0) = {qε, q0}
δ(qε, 1) = {qε}

δ(q0, ε) = {q0, q00}
δ(q0, 0) = {q00}
δ(q0, 1) = {}

δ(q00, ε) = {q00}
δ(q00, 0) = {}
δ(q00, 1) = {qp}

δ(qp, ε) = {qp}
δ(qp, 0) = {qp}
δ(qp, 1) = {qp}

Chan, Har-Peled, Hassanieh (UIUC) CS374 12 Spring 2019 12 / 45

Extending the transition function to strings

1 NFA N = (Q,Σ, δ, s,A)

2 δ(q, a): set of states that N can go to from q on reading
a ∈ Σ ∪ {ε}.

3 Want transition function δ∗ : Q × Σ∗ → P(Q)

4 δ∗(q,w): set of states reachable on input w starting in state q.

Chan, Har-Peled, Hassanieh (UIUC) CS374 13 Spring 2019 13 / 45

Extending the transition function to strings

1 NFA N = (Q,Σ, δ, s,A)

2 δ(q, a): set of states that N can go to from q on reading
a ∈ Σ ∪ {ε}.

3 Want transition function δ∗ : Q × Σ∗ → P(Q)

4 δ∗(q,w): set of states reachable on input w starting in state q.

Chan, Har-Peled, Hassanieh (UIUC) CS374 13 Spring 2019 13 / 45

Extending the transition function to strings

1 NFA N = (Q,Σ, δ, s,A)

2 δ(q, a): set of states that N can go to from q on reading
a ∈ Σ ∪ {ε}.

3 Want transition function δ∗ : Q × Σ∗ → P(Q)

4 δ∗(q,w): set of states reachable on input w starting in state q.

Chan, Har-Peled, Hassanieh (UIUC) CS374 13 Spring 2019 13 / 45

Extending the transition function to strings

1 NFA N = (Q,Σ, δ, s,A)

2 δ(q, a): set of states that N can go to from q on reading
a ∈ Σ ∪ {ε}.

3 Want transition function δ∗ : Q × Σ∗ → P(Q)

4 δ∗(q,w): set of states reachable on input w starting in state q.

Chan, Har-Peled, Hassanieh (UIUC) CS374 13 Spring 2019 13 / 45

Extending the transition function to strings

Definition
For NFA N = (Q,Σ, δ, s,A) and q ∈ Q the εreach(q) is the set
of all states that q can reach using only ε-transitions.

Models of Computation Lecture �: Nondeterministic Automata [Fa’��]

the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this
metaphor is that if an NFA reads a string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as
a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at c, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product ⌃⇥⌦ of an input alphabet ⌃ and an oracle alphabet ⌦.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string !. In either formulation, the transition function
has the form � : Q⇥ (⌃⇥⌦)! Q. As usual, this DFA accepts the pair (w,!) 2 (⌃⇥⌦)⇤ if and
only if �⇤(s, (w,!)) 2 A. Finally, M nondeterministically accepts the string w 2 ⌃⇤ if there is
an oracle string ! 2 ⌦⇤ with |!|= |w| such that (w,!) 2 L(M).

�.� "-Transitions

It is fairly common for NFAs to include so-called "-transitions, which allow the machine to
change state without reading an input symbol. An NFA with "-transitions accepts a string w
if and only if there is a sequence of transitions s

a1�! q1
a2�! q2

a3�! · · · a`�! q` where the final
state q` is accepting, each ai is either " or a symbol in ⌃, and a1a2 · · · a` = w.

For example, consider the following NFA with "-transitions. (For this example, we indicate
the "-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has
more "-transitions than necessary.

0 0

1 1

1,0 1,0s

b

g

e
ε

ε

εε
ε

c

f

a

d
ε

An NFA with "-transitions

The NFA starts as usual in state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

s
1�! s

"�! d
"�! a

0�! b
0�! c

"�! d
1�! e

1�! f
"�! e

1�! f
"�! c

"�! g

More formally, the transition function in an NFA with "-transitions has a slightly larger
domain � : Q⇥ (⌃[{"})! 2Q. The "-reach of a state q 2Q consists of all states r that satisfy
one of the following conditions:

• either r = q,

• or r 2 �(q0,") for some state q0 in the "-reach of q.

In other words, r is in the "-reach of q if there is a (possibly empty) sequence of "-transitions
leading from q to r. For example, in the example NFA above, the "-reach of state f is {a, c, d, f , g}.

�

Chan, Har-Peled, Hassanieh (UIUC) CS374 14 Spring 2019 14 / 45

Extending the transition function to strings

Definition
For NFA N = (Q,Σ, δ, s,A) and q ∈ Q the εreach(q) is the set
of all states that q can reach using only ε-transitions.

Models of Computation Lecture �: Nondeterministic Automata [Fa’��]

the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this
metaphor is that if an NFA reads a string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as
a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at c, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product ⌃⇥⌦ of an input alphabet ⌃ and an oracle alphabet ⌦.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string !. In either formulation, the transition function
has the form � : Q⇥ (⌃⇥⌦)! Q. As usual, this DFA accepts the pair (w,!) 2 (⌃⇥⌦)⇤ if and
only if �⇤(s, (w,!)) 2 A. Finally, M nondeterministically accepts the string w 2 ⌃⇤ if there is
an oracle string ! 2 ⌦⇤ with |!|= |w| such that (w,!) 2 L(M).

�.� "-Transitions

It is fairly common for NFAs to include so-called "-transitions, which allow the machine to
change state without reading an input symbol. An NFA with "-transitions accepts a string w
if and only if there is a sequence of transitions s

a1�! q1
a2�! q2

a3�! · · · a`�! q` where the final
state q` is accepting, each ai is either " or a symbol in ⌃, and a1a2 · · · a` = w.

For example, consider the following NFA with "-transitions. (For this example, we indicate
the "-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has
more "-transitions than necessary.

0 0

1 1

1,0 1,0s

b

g

e
ε

ε

εε
ε

c

f

a

d
ε

An NFA with "-transitions

The NFA starts as usual in state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

s
1�! s

"�! d
"�! a

0�! b
0�! c

"�! d
1�! e

1�! f
"�! e

1�! f
"�! c

"�! g

More formally, the transition function in an NFA with "-transitions has a slightly larger
domain � : Q⇥ (⌃[{"})! 2Q. The "-reach of a state q 2Q consists of all states r that satisfy
one of the following conditions:

• either r = q,

• or r 2 �(q0,") for some state q0 in the "-reach of q.

In other words, r is in the "-reach of q if there is a (possibly empty) sequence of "-transitions
leading from q to r. For example, in the example NFA above, the "-reach of state f is {a, c, d, f , g}.

�

Chan, Har-Peled, Hassanieh (UIUC) CS374 15 Spring 2019 15 / 45

Extending the transition function to strings

Definition
For NFA N = (Q,Σ, δ, s,A) and q ∈ Q the εreach(q) is the set
of all states that q can reach using only ε-transitions.

Definition
Inductive definition of δ∗ : Q × Σ∗ → P(Q):

if w = ε, δ∗(q,w) = εreach(q)

if w = a where a ∈ Σ
δ∗(q, a) = ∪p∈εreach(q)(∪r∈δ(p,a)εreach(r))

if w = ax ,
δ∗(q,w) = ∪p∈εreach(q)(∪r∈δ(p,a)δ

∗(r , x))

Chan, Har-Peled, Hassanieh (UIUC) CS374 16 Spring 2019 16 / 45

Extending the transition function to strings

Definition
For NFA N = (Q,Σ, δ, s,A) and q ∈ Q the εreach(q) is the set
of all states that q can reach using only ε-transitions.

Definition
Inductive definition of δ∗ : Q × Σ∗ → P(Q):

if w = ε, δ∗(q,w) = εreach(q)

if w = a where a ∈ Σ
δ∗(q, a) = ∪p∈εreach(q)(∪r∈δ(p,a)εreach(r))

if w = ax ,
δ∗(q,w) = ∪p∈εreach(q)(∪r∈δ(p,a)δ

∗(r , x))

Chan, Har-Peled, Hassanieh (UIUC) CS374 16 Spring 2019 16 / 45

Extending the transition function to strings

Definition
For NFA N = (Q,Σ, δ, s,A) and q ∈ Q the εreach(q) is the set
of all states that q can reach using only ε-transitions.

Definition
Inductive definition of δ∗ : Q × Σ∗ → P(Q):

if w = ε, δ∗(q,w) = εreach(q)

if w = a where a ∈ Σ
δ∗(q, a) = ∪p∈εreach(q)(∪r∈δ(p,a)εreach(r))

if w = ax ,
δ∗(q,w) = ∪p∈εreach(q)(∪r∈δ(p,a)δ

∗(r , x))

Chan, Har-Peled, Hassanieh (UIUC) CS374 16 Spring 2019 16 / 45

Formal definition of language accepted by N

Definition
A string w is accepted by NFA N if δ∗N(s,w) ∩ A 6= ∅.

Definition
The language L(N) accepted by a NFA N = (Q,Σ, δ, s,A) is

{w ∈ Σ∗ | δ∗(s,w) ∩ A 6= ∅}.

Important: Formal definition of the language of NFA above uses δ∗

and not δ. As such, one does not need to include ε-transitions
closure when specifying δ, since δ∗ takes care of that.

Chan, Har-Peled, Hassanieh (UIUC) CS374 17 Spring 2019 17 / 45

Formal definition of language accepted by N

Definition
A string w is accepted by NFA N if δ∗N(s,w) ∩ A 6= ∅.

Definition
The language L(N) accepted by a NFA N = (Q,Σ, δ, s,A) is

{w ∈ Σ∗ | δ∗(s,w) ∩ A 6= ∅}.

Important: Formal definition of the language of NFA above uses δ∗

and not δ. As such, one does not need to include ε-transitions
closure when specifying δ, since δ∗ takes care of that.

Chan, Har-Peled, Hassanieh (UIUC) CS374 17 Spring 2019 17 / 45

Example

Models of Computation Lecture �: Nondeterministic Automata [Fa’��]

the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this
metaphor is that if an NFA reads a string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as
a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at c, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product ⌃⇥⌦ of an input alphabet ⌃ and an oracle alphabet ⌦.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string !. In either formulation, the transition function
has the form � : Q⇥ (⌃⇥⌦)! Q. As usual, this DFA accepts the pair (w,!) 2 (⌃⇥⌦)⇤ if and
only if �⇤(s, (w,!)) 2 A. Finally, M nondeterministically accepts the string w 2 ⌃⇤ if there is
an oracle string ! 2 ⌦⇤ with |!|= |w| such that (w,!) 2 L(M).

�.� "-Transitions

It is fairly common for NFAs to include so-called "-transitions, which allow the machine to
change state without reading an input symbol. An NFA with "-transitions accepts a string w
if and only if there is a sequence of transitions s

a1�! q1
a2�! q2

a3�! · · · a`�! q` where the final
state q` is accepting, each ai is either " or a symbol in ⌃, and a1a2 · · · a` = w.

For example, consider the following NFA with "-transitions. (For this example, we indicate
the "-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has
more "-transitions than necessary.

0 0

1 1

1,0 1,0s

b

g

e
ε

ε

εε
ε

c

f

a

d
ε

An NFA with "-transitions

The NFA starts as usual in state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

s
1�! s

"�! d
"�! a

0�! b
0�! c

"�! d
1�! e

1�! f
"�! e

1�! f
"�! c

"�! g

More formally, the transition function in an NFA with "-transitions has a slightly larger
domain � : Q⇥ (⌃[{"})! 2Q. The "-reach of a state q 2Q consists of all states r that satisfy
one of the following conditions:

• either r = q,

• or r 2 �(q0,") for some state q0 in the "-reach of q.

In other words, r is in the "-reach of q if there is a (possibly empty) sequence of "-transitions
leading from q to r. For example, in the example NFA above, the "-reach of state f is {a, c, d, f , g}.

�

What is:

δ∗(s, ε)

δ∗(s, 0)

δ∗(c, 0)

δ∗(b, 00)

Chan, Har-Peled, Hassanieh (UIUC) CS374 18 Spring 2019 18 / 45

Example

Models of Computation Lecture �: Nondeterministic Automata [Fa’��]

the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this
metaphor is that if an NFA reads a string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as
a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at c, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product ⌃⇥⌦ of an input alphabet ⌃ and an oracle alphabet ⌦.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string !. In either formulation, the transition function
has the form � : Q⇥ (⌃⇥⌦)! Q. As usual, this DFA accepts the pair (w,!) 2 (⌃⇥⌦)⇤ if and
only if �⇤(s, (w,!)) 2 A. Finally, M nondeterministically accepts the string w 2 ⌃⇤ if there is
an oracle string ! 2 ⌦⇤ with |!|= |w| such that (w,!) 2 L(M).

�.� "-Transitions

It is fairly common for NFAs to include so-called "-transitions, which allow the machine to
change state without reading an input symbol. An NFA with "-transitions accepts a string w
if and only if there is a sequence of transitions s

a1�! q1
a2�! q2

a3�! · · · a`�! q` where the final
state q` is accepting, each ai is either " or a symbol in ⌃, and a1a2 · · · a` = w.

For example, consider the following NFA with "-transitions. (For this example, we indicate
the "-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has
more "-transitions than necessary.

0 0

1 1

1,0 1,0s

b

g

e
ε

ε

εε
ε

c

f

a

d
ε

An NFA with "-transitions

The NFA starts as usual in state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

s
1�! s

"�! d
"�! a

0�! b
0�! c

"�! d
1�! e

1�! f
"�! e

1�! f
"�! c

"�! g

More formally, the transition function in an NFA with "-transitions has a slightly larger
domain � : Q⇥ (⌃[{"})! 2Q. The "-reach of a state q 2Q consists of all states r that satisfy
one of the following conditions:

• either r = q,

• or r 2 �(q0,") for some state q0 in the "-reach of q.

In other words, r is in the "-reach of q if there is a (possibly empty) sequence of "-transitions
leading from q to r. For example, in the example NFA above, the "-reach of state f is {a, c, d, f , g}.

�

What is:

δ∗(s, ε)
δ∗(s, 0)

δ∗(c, 0)

δ∗(b, 00)

Chan, Har-Peled, Hassanieh (UIUC) CS374 18 Spring 2019 18 / 45

Example

Models of Computation Lecture �: Nondeterministic Automata [Fa’��]

the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this
metaphor is that if an NFA reads a string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as
a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at c, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product ⌃⇥⌦ of an input alphabet ⌃ and an oracle alphabet ⌦.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string !. In either formulation, the transition function
has the form � : Q⇥ (⌃⇥⌦)! Q. As usual, this DFA accepts the pair (w,!) 2 (⌃⇥⌦)⇤ if and
only if �⇤(s, (w,!)) 2 A. Finally, M nondeterministically accepts the string w 2 ⌃⇤ if there is
an oracle string ! 2 ⌦⇤ with |!|= |w| such that (w,!) 2 L(M).

�.� "-Transitions

It is fairly common for NFAs to include so-called "-transitions, which allow the machine to
change state without reading an input symbol. An NFA with "-transitions accepts a string w
if and only if there is a sequence of transitions s

a1�! q1
a2�! q2

a3�! · · · a`�! q` where the final
state q` is accepting, each ai is either " or a symbol in ⌃, and a1a2 · · · a` = w.

For example, consider the following NFA with "-transitions. (For this example, we indicate
the "-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has
more "-transitions than necessary.

0 0

1 1

1,0 1,0s

b

g

e
ε

ε

εε
ε

c

f

a

d
ε

An NFA with "-transitions

The NFA starts as usual in state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

s
1�! s

"�! d
"�! a

0�! b
0�! c

"�! d
1�! e

1�! f
"�! e

1�! f
"�! c

"�! g

More formally, the transition function in an NFA with "-transitions has a slightly larger
domain � : Q⇥ (⌃[{"})! 2Q. The "-reach of a state q 2Q consists of all states r that satisfy
one of the following conditions:

• either r = q,

• or r 2 �(q0,") for some state q0 in the "-reach of q.

In other words, r is in the "-reach of q if there is a (possibly empty) sequence of "-transitions
leading from q to r. For example, in the example NFA above, the "-reach of state f is {a, c, d, f , g}.

�

What is:

δ∗(s, ε)
δ∗(s, 0)

δ∗(c, 0)

δ∗(b, 00)

Chan, Har-Peled, Hassanieh (UIUC) CS374 18 Spring 2019 18 / 45

Example

Models of Computation Lecture �: Nondeterministic Automata [Fa’��]

the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this
metaphor is that if an NFA reads a string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as
a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at c, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product ⌃⇥⌦ of an input alphabet ⌃ and an oracle alphabet ⌦.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string !. In either formulation, the transition function
has the form � : Q⇥ (⌃⇥⌦)! Q. As usual, this DFA accepts the pair (w,!) 2 (⌃⇥⌦)⇤ if and
only if �⇤(s, (w,!)) 2 A. Finally, M nondeterministically accepts the string w 2 ⌃⇤ if there is
an oracle string ! 2 ⌦⇤ with |!|= |w| such that (w,!) 2 L(M).

�.� "-Transitions

It is fairly common for NFAs to include so-called "-transitions, which allow the machine to
change state without reading an input symbol. An NFA with "-transitions accepts a string w
if and only if there is a sequence of transitions s

a1�! q1
a2�! q2

a3�! · · · a`�! q` where the final
state q` is accepting, each ai is either " or a symbol in ⌃, and a1a2 · · · a` = w.

For example, consider the following NFA with "-transitions. (For this example, we indicate
the "-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has
more "-transitions than necessary.

0 0

1 1

1,0 1,0s

b

g

e
ε

ε

εε
ε

c

f

a

d
ε

An NFA with "-transitions

The NFA starts as usual in state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

s
1�! s

"�! d
"�! a

0�! b
0�! c

"�! d
1�! e

1�! f
"�! e

1�! f
"�! c

"�! g

More formally, the transition function in an NFA with "-transitions has a slightly larger
domain � : Q⇥ (⌃[{"})! 2Q. The "-reach of a state q 2Q consists of all states r that satisfy
one of the following conditions:

• either r = q,

• or r 2 �(q0,") for some state q0 in the "-reach of q.

In other words, r is in the "-reach of q if there is a (possibly empty) sequence of "-transitions
leading from q to r. For example, in the example NFA above, the "-reach of state f is {a, c, d, f , g}.

�

What is:

δ∗(s, ε)
δ∗(s, 0)

δ∗(c, 0)

δ∗(b, 00)

Chan, Har-Peled, Hassanieh (UIUC) CS374 18 Spring 2019 18 / 45

Another definition of computation

Definition

q w−→N p: State p of NFA N is reachable from q on w ⇐⇒
there exists a sequence of states r0, r1, . . . , rk and a sequence
x1, x2, . . . , xk where xi ∈ Σ ∪ {ε}, for each i , such that:

r0 = q,

for each i , ri+1 ∈ δ(ri , xi+1),

rk = p, and

w = x1x2x3 · · · xk .

Definition

δ∗N(q,w) =
{
p ∈ Q

∣∣∣ q w−→N p
}

.

Chan, Har-Peled, Hassanieh (UIUC) CS374 19 Spring 2019 19 / 45

Why non-determinism?

Non-determinism adds power to the model; richer programming
language and hence (much) easier to “design” programs

Fundamental in theory to prove many theorems

Very important in practice directly and indirectly

Many deep connections to various fields in Computer Science
and Mathematics

Many interpretations of non-determinism. Hard to understand at the
outset. Get used to it and then you will appreciate it slowly.

Chan, Har-Peled, Hassanieh (UIUC) CS374 20 Spring 2019 20 / 45

Part II

Constructing NFAs

Chan, Har-Peled, Hassanieh (UIUC) CS374 21 Spring 2019 21 / 45

DFAs and NFAs

Every DFA is a NFA so NFAs are at least as powerful as
DFAs.

NFAs prove ability to “guess and verify” which simplifies design
and reduces number of states

Easy proofs of some closure properties

Chan, Har-Peled, Hassanieh (UIUC) CS374 22 Spring 2019 22 / 45

Example

Strings that represent decimal numbers.

0 21
.ε, –

53

4

.

0 0,1,2,...,9

1,2,...,9

0,1,2,...,9

0,1,2,...,9

Chan, Har-Peled, Hassanieh (UIUC) CS374 23 Spring 2019 23 / 45

Example

Strings that represent decimal numbers.

0 21
.ε, –

53

4

.

0 0,1,2,...,9

1,2,...,9

0,1,2,...,9

0,1,2,...,9

Chan, Har-Peled, Hassanieh (UIUC) CS374 23 Spring 2019 23 / 45

Example

{strings that contain CS374 as a substring}

{strings that contain CS374 or CS473 as a substring}
{strings that contain CS374 and CS473 as substrings}

Chan, Har-Peled, Hassanieh (UIUC) CS374 24 Spring 2019 24 / 45

Example

{strings that contain CS374 as a substring}
{strings that contain CS374 or CS473 as a substring}

{strings that contain CS374 and CS473 as substrings}

Chan, Har-Peled, Hassanieh (UIUC) CS374 24 Spring 2019 24 / 45

Example

{strings that contain CS374 as a substring}
{strings that contain CS374 or CS473 as a substring}
{strings that contain CS374 and CS473 as substrings}

Chan, Har-Peled, Hassanieh (UIUC) CS374 24 Spring 2019 24 / 45

Example

Lk = {bitstrings that have a 1 k positions from the end}

Chan, Har-Peled, Hassanieh (UIUC) CS374 25 Spring 2019 25 / 45

A simple transformation

Theorem
For every NFA N there is another NFA N ′ such that
L(N) = L(N ′) and such that N ′ has the following two properties:

N ′ has single final state f that has no outgoing transitions

The start state s of N is different from f

Chan, Har-Peled, Hassanieh (UIUC) CS374 26 Spring 2019 26 / 45

Part III

Closure Properties of NFAs

Chan, Har-Peled, Hassanieh (UIUC) CS374 27 Spring 2019 27 / 45

Closure properties of NFAs

Are the class of languages accepted by NFAs closed under the
following operations?

union

intersection

concatenation

Kleene star

complement

Chan, Har-Peled, Hassanieh (UIUC) CS374 28 Spring 2019 28 / 45

Closure under union

Theorem
For any two NFAs N1 and N2 there is a NFA N such that
L(N) = L(N1) ∪ L(N2).

q1 f1N1

q2 f2N2

Chan, Har-Peled, Hassanieh (UIUC) CS374 29 Spring 2019 29 / 45

Closure under union

Theorem
For any two NFAs N1 and N2 there is a NFA N such that
L(N) = L(N1) ∪ L(N2).

q1 f1N1

q2 f2N2

Chan, Har-Peled, Hassanieh (UIUC) CS374 29 Spring 2019 29 / 45

Closure under concatenation

Theorem
For any two NFAs N1 and N2 there is a NFA N such that
L(N) = L(N1)·L(N2).

q1 f1N1 q2 f2N2

Chan, Har-Peled, Hassanieh (UIUC) CS374 30 Spring 2019 30 / 45

Closure under concatenation

Theorem
For any two NFAs N1 and N2 there is a NFA N such that
L(N) = L(N1)·L(N2).

q1 f1N1 q2 f2N2

Chan, Har-Peled, Hassanieh (UIUC) CS374 30 Spring 2019 30 / 45

Closure under Kleene star

Theorem
For any NFA N1 there is a NFA N such that L(N) = (L(N1))∗.

q1 f1N1

Chan, Har-Peled, Hassanieh (UIUC) CS374 31 Spring 2019 31 / 45

Closure under Kleene star

Theorem
For any NFA N1 there is a NFA N such that L(N) = (L(N1))∗.

q1 f1N1

ε

Chan, Har-Peled, Hassanieh (UIUC) CS374 32 Spring 2019 32 / 45

Closure under Kleene star

Theorem
For any NFA N1 there is a NFA N such that L(N) = (L(N1))∗.

q1 f1N1

ε

Does not work! Why?

Chan, Har-Peled, Hassanieh (UIUC) CS374 33 Spring 2019 33 / 45

Closure under Kleene star

Theorem
For any NFA N1 there is a NFA N such that L(N) = (L(N1))∗.

q1 f1N1

ε

Does not work! Why?
Chan, Har-Peled, Hassanieh (UIUC) CS374 33 Spring 2019 33 / 45

Closure under Kleene star

Theorem
For any NFA N1 there is a NFA N such that L(N) = (L(N1))∗.

q1 f1N1q0
ε

ε

Chan, Har-Peled, Hassanieh (UIUC) CS374 34 Spring 2019 34 / 45

Part IV

NFAs capture Regular Languages

Chan, Har-Peled, Hassanieh (UIUC) CS374 35 Spring 2019 35 / 45

Regular Languages Recap

Regular Languages Regular Expressions

∅ regular ∅ denotes ∅
{ε} regular ε denotes {ε}
{a} regular for a ∈ Σ a denote {a}
R1 ∪ R2 regular if both are r1 + r2 denotes R1 ∪ R2

R1R2 regular if both are r1r2 denotes R1R2

R∗ is regular if R is r∗ denote R∗

Regular expressions denote regular languages — they explicitly show
the operations that were used to form the language

Chan, Har-Peled, Hassanieh (UIUC) CS374 36 Spring 2019 36 / 45

NFAs and Regular Language

Theorem
For every regular language L there is an NFA N such that
L = L(N).

Proof strategy:

For every regular expression r show that there is a NFA N such
that L(r) = L(N)

Induction on length of r

Chan, Har-Peled, Hassanieh (UIUC) CS374 37 Spring 2019 37 / 45

NFAs and Regular Language

Theorem
For every regular language L there is an NFA N such that
L = L(N).

Proof strategy:

For every regular expression r show that there is a NFA N such
that L(r) = L(N)

Induction on length of r

Chan, Har-Peled, Hassanieh (UIUC) CS374 37 Spring 2019 37 / 45

NFAs and Regular Language

For every regular expression r show that there is a NFA N such
that L(r) = L(N)

Induction on length of r

Base cases: ∅, {ε}, {a} for a ∈ Σ.

Chan, Har-Peled, Hassanieh (UIUC) CS374 38 Spring 2019 38 / 45

NFAs and Regular Language

For every regular expression r show that there is a NFA N such
that L(r) = L(N)

Induction on length of r

Inductive cases:

r1, r2 regular expressions and r = r1 + r2.

By induction there are NFAs N1,N2 s.t
L(N1) = L(r1) and L(N2) = L(r2). We have already seen that
there is NFA N s.t L(N) = L(N1) ∪ L(N2), hence
L(N) = L(r)

r = r1·r2. Use closure of NFA languages under concatenation

r = (r1)∗. Use closure of NFA languages under Kleene star

Chan, Har-Peled, Hassanieh (UIUC) CS374 39 Spring 2019 39 / 45

NFAs and Regular Language

For every regular expression r show that there is a NFA N such
that L(r) = L(N)

Induction on length of r

Inductive cases:

r1, r2 regular expressions and r = r1 + r2.
By induction there are NFAs N1,N2 s.t
L(N1) = L(r1) and L(N2) = L(r2).

We have already seen that
there is NFA N s.t L(N) = L(N1) ∪ L(N2), hence
L(N) = L(r)

r = r1·r2. Use closure of NFA languages under concatenation

r = (r1)∗. Use closure of NFA languages under Kleene star

Chan, Har-Peled, Hassanieh (UIUC) CS374 39 Spring 2019 39 / 45

NFAs and Regular Language

For every regular expression r show that there is a NFA N such
that L(r) = L(N)

Induction on length of r

Inductive cases:

r1, r2 regular expressions and r = r1 + r2.
By induction there are NFAs N1,N2 s.t
L(N1) = L(r1) and L(N2) = L(r2). We have already seen that
there is NFA N s.t L(N) = L(N1) ∪ L(N2), hence
L(N) = L(r)

r = r1·r2. Use closure of NFA languages under concatenation

r = (r1)∗. Use closure of NFA languages under Kleene star

Chan, Har-Peled, Hassanieh (UIUC) CS374 39 Spring 2019 39 / 45

NFAs and Regular Language

For every regular expression r show that there is a NFA N such
that L(r) = L(N)

Induction on length of r

Inductive cases:

r1, r2 regular expressions and r = r1 + r2.
By induction there are NFAs N1,N2 s.t
L(N1) = L(r1) and L(N2) = L(r2). We have already seen that
there is NFA N s.t L(N) = L(N1) ∪ L(N2), hence
L(N) = L(r)

r = r1·r2.

Use closure of NFA languages under concatenation

r = (r1)∗. Use closure of NFA languages under Kleene star

Chan, Har-Peled, Hassanieh (UIUC) CS374 39 Spring 2019 39 / 45

NFAs and Regular Language

For every regular expression r show that there is a NFA N such
that L(r) = L(N)

Induction on length of r

Inductive cases:

r1, r2 regular expressions and r = r1 + r2.
By induction there are NFAs N1,N2 s.t
L(N1) = L(r1) and L(N2) = L(r2). We have already seen that
there is NFA N s.t L(N) = L(N1) ∪ L(N2), hence
L(N) = L(r)

r = r1·r2. Use closure of NFA languages under concatenation

r = (r1)∗. Use closure of NFA languages under Kleene star

Chan, Har-Peled, Hassanieh (UIUC) CS374 39 Spring 2019 39 / 45

NFAs and Regular Language

For every regular expression r show that there is a NFA N such
that L(r) = L(N)

Induction on length of r

Inductive cases:

r1, r2 regular expressions and r = r1 + r2.
By induction there are NFAs N1,N2 s.t
L(N1) = L(r1) and L(N2) = L(r2). We have already seen that
there is NFA N s.t L(N) = L(N1) ∪ L(N2), hence
L(N) = L(r)

r = r1·r2. Use closure of NFA languages under concatenation

r = (r1)∗.

Use closure of NFA languages under Kleene star

Chan, Har-Peled, Hassanieh (UIUC) CS374 39 Spring 2019 39 / 45

NFAs and Regular Language

For every regular expression r show that there is a NFA N such
that L(r) = L(N)

Induction on length of r

Inductive cases:

r1, r2 regular expressions and r = r1 + r2.
By induction there are NFAs N1,N2 s.t
L(N1) = L(r1) and L(N2) = L(r2). We have already seen that
there is NFA N s.t L(N) = L(N1) ∪ L(N2), hence
L(N) = L(r)

r = r1·r2. Use closure of NFA languages under concatenation

r = (r1)∗. Use closure of NFA languages under Kleene star

Chan, Har-Peled, Hassanieh (UIUC) CS374 39 Spring 2019 39 / 45

Example

(ε+0)(1+10)*

(ε+0) (1+10)*

ε

0
(1+10) *

Chan, Har-Peled, Hassanieh (UIUC) CS374 40 Spring 2019 40 / 45

Example

(ε+0)(1+10)*

(ε+0) (1+10)*

ε

0
(1+10) *

Chan, Har-Peled, Hassanieh (UIUC) CS374 41 Spring 2019 41 / 45

Example

ε

0
(1+10) *

ε

0 1
*10

ε

0
1

*1	 0

Chan, Har-Peled, Hassanieh (UIUC) CS374 42 Spring 2019 42 / 45

Example

ε

0
(1+10) *

ε

0 1
*10

ε

0
1

*1	 0

Chan, Har-Peled, Hassanieh (UIUC) CS374 43 Spring 2019 43 / 45

Example

ε

0
(1+10) *

ε

0 1
*10

ε

0
1

*1	 0

Chan, Har-Peled, Hassanieh (UIUC) CS374 44 Spring 2019 44 / 45

Example

ε

0
1

*1	 0

0 1

ε

0

ε 42

3

1

1 0

ε

Final NFA simplified slightly to reduce states
Chan, Har-Peled, Hassanieh (UIUC) CS374 45 Spring 2019 45 / 45

	NFA Introduction
	Constructing NFAs
	Closure Properties of NFAs
	NFAs capture Regular Languages

