Final Mon May 6, 1:30 p - 4:30 p
(175 min)

cheat sheet as before

7 problems

Undecidability

#11. \(L = \{ <M> \mid \text{TM } M \text{ accepts exactly one string of length } n \geq 0 \} \)

\[= \{ <M> \mid L(M) \text{ has exactly one string of } \cdots \} \]

is undecidable.

PT: Assume \(L \) is decided by algm \(\text{Funny}(<M>) \).
We'll design an algm to solve \(\text{Halting} \):

\(\text{Halting}(<M, w>) \):
1. encode the following TM \(M_w' \):

\[M_w'(x): \begin{cases} \text{run } M \text{ on } w \\ \text{if } x \in 0^* \text{ return true} \\ \text{else } \text{false} \end{cases} \]

2. if \(\text{Funny}(<M_w>) \) return true
else return false.

Then \(L(M_w') = \{ 0^* \text{ if } M \text{ halts on } w \} \)

\(0^* \text{ else} \)
then \(L(M_w) = \{ 0 \uparrow \} \) if \(w \) is a valid input for \(M \)
else

\[\text{Halting}(\langle M, w \rangle) \text{ returns true} \]
\[\iff \text{Funny}(\langle M, w \rangle) \text{ returns true} \]
\[\iff L(M_w) \text{ contains exactly 1 string of each length} \]
\[\iff M \text{ halts on } w. \]

\[\text{Halting is decidable: contra!} \quad \square \]

NP-Complete

#3p. **Ultra-HC**:

Input: undirected graph \(G=(V,E) \).
Output: yes if \(\exists \) closed walk that visits every vertex exactly once, except \(\leq 1 \) vertex may be visited more than once

1. **Ultra-HC \(\in \) NP**:
 - Certificate: closed walk
 - Certifier: check \(C \) is ultra-Ham cycle polytime

2. **HC \(\leq_p \) Ultra-HC**:
 - Given input to HC: undirected graph \(G=(V,E) \),
 - Construct input to Ultra-HC: new graph \(G'=(V',E') \)
 - as follows:

 (CORRECTED SOL’N!!)

 ![Graph Diagram]
Fix vertex \(s \in V \), with neighbors \(u_1, \ldots, u_k \). Let \(G' \) be the graph:

\[
V' = V - \{s\} \cup \{s', s'', x, y\}.
\]

\[
E' = E - \{su_i : i = 1, \ldots, k\} \cup \{s' u_i : i = 1, \ldots, k\} \cup \{s'' u_i : i = 1, \ldots, k\} \cup \{s' x, x s'', x y\}
\]

Construction \(G \to G' \) takes polynomial time.

Correctness: \(\exists \) Hamilton cycle \(C \) in \(G \)

\[\iff \exists \text{ ultra Hamilton cycle } C' \text{ in } G' \]

Proof: (\(\Rightarrow \)) Given \(C = v_1, v_2, \ldots, v_n, v_1 \), wlog say \(u_1 = s \).
Let \(C' = s' v_2, \ldots, v_n, s'', x, y, x, s' \), which is an ultra Hamilton cycle (only \(x \) is repeated).

(\(\Leftarrow \)) Given ultra Hamilton cycle \(C' \),
- \(x \) must be repeated
 (since it's the only way to get to \(y \))
- So all other vertices are visited once (including \(s', s'' \))
- So \(C' \) contains a path from \(s' \) to \(s'' \) visiting all vertices in \(V - \{s\} \) once
- This maps back to a Hamilton cycle in \(G \).
(Note: you may assume NP-completeness of 3SAT, indep set, vertex cover, clique, 3-coloring, Ham cycle/path, subset sum. Remember definitions of these problems.)

Greedy

#19 (mid2 ridden)

Given set of n intervals $[a_1, b_1], \ldots, [a_n, b_n]$, find smallest set P of pts that stabs X.
\[P = \emptyset \]

\[
\text{repeat } \{
\begin{align*}
\text{pick } i \text{ with smallest } b_i \\
\text{insert } b_i \text{ to } P \\
\text{remove all intervals stabbed by } b_i
\end{align*}
\}
\]

Correctness Pf:

Let \(P^* \) be opt soln.

Let \(i \) minimizes \(b_i \).

Let \(x^* \in P^* \) that stabs \((a_i, b_i) \)

\[a_i \quad b_i \]

\[x^* \]

For every interval \((a_j, b_j) \) stabbed by \(x^* \),

\[a_i \quad b_i \]

\[x^* \]

Know \(b_i \leq b_j \).

\[\Rightarrow \] \((a_j, b_j) \) is stabbed by \(b_i \).

\[\Rightarrow \] \(P^* - \{x^*\} \cup \{b_i\} \) is a feasible soln.
$P - \{x^i\} \cup \{b_i\}$ is a tension join & is also optimal & uses b_i.

Repeat arg.

$\Rightarrow \exists$ opt soln that agrees with greedy. \qed