Last Time:
- SAT is NP-complete.
- 3SAT is NP-complete.

Recipe: To show L is NP-complete:
① L ∈ NP
② L₀ ≤ₚ L for some known NP-complete L₀.

Independent Set

Input: G=(V,E), integer k
Output: yes iff ∃ independent set S of size > k.

Thus, **Independent Set is NP-complete.**

Pf: ① Independent ∈ NP:
Certificate: subset S ⊆ V.
Certificate checks |S| ≤ k
& ∀ u, v ∈ S, u ≠ v ∈ E, poly-size

② 3SAT ≤ₚ Independent-Set:
Given input to 3SAT: a 3CNF formula F
with n vars, m clauses,
construct input to Independent-Set: graph G=(V,E),
& integer k
Construct input to Indep Set: graph \(u-vz \), & integer \(k \).

as follows:

for each clause \(\alpha_{ij} \lor \alpha_{i2} \lor \alpha_{i3} \),
create 3 vertices \(v_{i1}, v_{i2}, v_{i3} \)

& 3 edges \(v_{i1} v_{i2}, v_{i2} v_{i3}, v_{i3} v_{i1} \)

whenever \(\alpha_{ij} = \overline{\alpha_{ij}} \),
add edge \(v_{ij} v_{ij} \) — "cross" edges

Set \(k = m \).
Construction \(F \rightarrow (G, k) \) takes poly time.
\((O(m) \) vertices; \(G \), \(O(m^2) \) edges).

E.g. given \(F = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_4) \land (\overline{x_2} \lor x_3 \lor x_4) \land (x_1 \lor \overline{x_3} \lor x_4) \)
\((x_1 = 1, x_2 = 1, x_3 = 1, x_4 = 0) \)

Construct \(G : \)

Correctness: \(\exists \) assignment that makes \(F \) true
\(\iff \exists \) indep set \(S \) for \(G \) of size \(\geq k \).

Pf: \((\Rightarrow)\) Let \(A \) be a sat. assignment for \(F \).
construct a subset \(S \) as follows:
Define a subset S as follows:
for each clause $\alpha_{ij} \lor \alpha_{i'j} \lor \alpha_{i''j}$, pick some j s.t. α_{ij} is true.
put v_{ij} in S.

Then $|S| = m = k$.
S is an independent set.
(check triangle edges ✓
 cross edge ✓)

(\Leftarrow) Let S be an independent set of G of size $\geq k$.

Define an assignment α as follows:
whenever v_{ij} is in S,
set α_{ij} to true.
(Set all remaining vars arbitrarily.)

Then α is consistent:
if $\alpha_{ij} = \overline{\alpha_{ij}}$, can't have $v_{ij}, v_{i'j}$ both in S because of cross edge
so can't set both $\alpha_{ij}, \alpha_{i'j}$ true.

α is satisfying:
for each triangle,
at most one v_{ij} is in S.

but since $|S| \geq k = m$,
exactly one v_{ij} is in S
so $\alpha_{ij} \lor \alpha_{i'j} \lor \alpha_{i''j}$ is true for α_i. \square
Cor

Vertex-Cover is NP-complete.
Set-Cover " "

\underline{Hamiltonian Cycle (HC)}

Input: graph \(G = (V, E) \)
Output: yes iff \(\exists \) cycle visiting every vertex exactly once

\text{e.g.}

\begin{itemize}
 \item \text{yes}
 \item \text{no}
\end{itemize}

\text{variants:}

\begin{itemize}
 \item \text{dir.}
 \item \text{Ham path}
\end{itemize}

\text{Note: dir-HC \leq_\text{P} undir-HC}

\text{Thm (Karp'72)} HC is NP-complete.
Pf: 1. HC ∈ NP
2. Vertex-Cover ≤p dir-HC:

Given input to VertexCover: undir graph \(G = (V, E) \), integer \(k \),

Construct input to dir-HC: dir graph \(G' \), as follows:

for each vertex \(v \in V \),
 draw a "line" \(e_v \)

\[e_v \longrightarrow \]

for each edge \(uv \in E \),
 add a gadget between \(e_u \) & \(e_v \)

\[e_u \longrightarrow \]
\[e_v \longrightarrow \]

(To be cont'd)

\[\begin{array}{c}
\text{e.g. } \quad G \quad \begin{array}{c}
A \quad \rightarrow \quad B \\
\quad \downarrow \quad \quad \quad \downarrow \\
C \quad \rightarrow \quad D \\
\end{array} \\
\end{array} \]

\[k = 2 \quad \{B, C\} \]