Fall course announcements:
Sariel CS 498 Rand. Algs
me CS 598 Geometric Data Structures

PART III: Undecidability & NP-Completeness

how to prove problem is hard to solve...

Def L is decidable

if ∃ TM/program M that
halts on all input & accepts w if w ∈ L
rejects w if w ∉ L

Turing's Thm

\[
\text{TM-Halt} = \{ \langle M, w \rangle \mid \text{TM } M \text{ halts on input string } w \}
\]

is undecidable.

Similarly,
Similarly,
\[\text{TM-Acc} = \{ <M,w> | \text{TM } M \text{ accepts input string } w \} \]
is undecidable.

Pf: By contradiction.

Assume \(\text{TM-Acc} \) is decidable, by TM/alg \(\text{Macc} \).

Will construct a counterex \(M_{bad}, w_{bad} \):

\(M_{bad} \) is this program:

- on input \(<M> \),
- run \(\text{Macc} \) on \(<M,<M>> \)
 - if \(\text{Macc} \) accepts, reject
 - else accept

\[w_{bad} = <M_{bad}>. \]

Case 1. \(\text{Macc} \) accepts \(<M_{bad},<M_{bad}> > \).
\(M_{bad} \) rejects \(<M_{bad}> \) : wrong!

Case 2. \(\text{Macc} \) rejects \(<M_{bad},<M_{bad}> > \)
\(M_{bad} \) accepts : wrong!

\[\square \]

From one hard problem, can prove other problems hard by reduction.

Ex1. \(\text{TM-Acc-All} = \{ <M> | \text{TM } M \text{ accepts all inputs} \} \)
\[= \{ <M> | L(M) = \Sigma^* \} \]
is undecidable.
\[
\text{[appl: main (\text{int } n):}
\begin{align*}
&\text{if } n \text{ is even then accept} \\
&\text{if sum of all divisors of } n \text{ is } 2n \\
&\text{then reject} \\
&\text{else accept}
\end{align*}
\]

Pf: By contradiction.

Assume TM-Acc-All is decidable by algm \(M_{\text{all}} \).

Will give an algm \(M_{\text{acc}} \) to decide TM-Acc:

On input \(<M, w>\),

construct \(<M'_w>\) encoding of a new TM \(M'_w \),

where on input \(x \),

\(M'_w \) ignores \(x \) & just simulate \(M \) on \(w \).

i.e. given string \(M = "f(...) \{\ldots\}" \)

and string \(w \),

construct new string

\[M'_w = "f(\ldots) \{\ldots\} \]

\[\text{main(string } x) \}\}

\[\text{return } f("w") \} \]

\]

String manipulation:
Linear time

\[M_{\text{acc}} \]

\[<M> \quad <M'_w> \quad M_{\text{all}} \quad \text{accept/reject} \]

\]
Then run M_{all} on $\langle M', w \rangle$
accept iff M_{all} accepts.

Correctness:
M_{acc} accepts $\langle M, w \rangle$
$\iff M_{all}$ accepts $\langle M', w \rangle$
$\iff M'$ accepts all input
$\iff M$ accepts w.

\Rightarrow $TM\text{-}Acc$ is decidable. Contradiction! \(\Box\)

Ex2
$TM\text{-}Acc\text{-}Same = \{ \langle M \rangle \mid L(M) \neq \emptyset \}$
is undecidable.

Same proof as Ex1!

$TM\text{-}Empty = \{ \langle M \rangle \mid L(M) = \emptyset \}$
is undecidable
(by closure under complement)

Ex3
$TM\text{-}EQUIV = \{ \langle M_1, M_2 \rangle \mid L(M_1) = L(M_2) \}$
is undecidable.

Pf: By contradiction.
Assume $TM\text{-}EQUIV$ is decidable, by algm M_{equiv}.
Will give algm to decide $TM\text{-}Acc\text{-}All$:

On input $\langle M \rangle$,
create $TM M_2$ with $L(M_2) = \Sigma^*$
just run M_{equiv} on $\langle M, M_2 \rangle$. _
Ex4 \[\text{Tm-Reg} = \{ \langle M \rangle \mid L(M) \text{ is regular for TM } M \} \]
is undecidable.

Pf: Very similar to Ex1.

By contradiction.

Assume Tm-Reg is decidable, by alg'm Mreg.

Will give an alg'n Macc to decide Tm-Acc

as follows:

1. On input \(\langle M, w \rangle \),
 1. construct encoding \(\langle M_w' \rangle \) of
 a new TM \(M_w' \)
 where
 - on input \(x \),
 - if \(M \) accepts \(w \)
 then \(M_w' \) accepts \(x \)
 else reject
 - iff \(x \) is a palindrome

2. run \(M_{\text{reg}} \) on \(\langle M_w' \rangle \)

3. accept iff \(M_{\text{reg}} \) rejects

Correctness:

\[L(M_w') = \begin{cases} \{ x \mid x \text{ is a palindrome} \} & \text{if } M \text{ accepts } w \\ \emptyset & \text{if } M \text{ rejects } w \\ \text{a reg. lang.} & \text{or } M \text{ does not halt on } w \end{cases} \]
Macc accepts \(\langle M, w \rangle \)
\[\iff\] Mreg rejects \(\langle M_w \rangle \)
\[\iff\] \(L(M_w) \) is not regular
\[\iff\] \(M \) accepts \(w \).

So, TM-Acc is decidable: Contradiction! \(\Box \)

Remark: Proof very general

Rice's Thm Let \(P \) be a property about langs.
\[\{ \langle M \rangle \mid L(M) \text{ has property } P \}\]
is undecidable

if \(P \) is nontrivial

(i.e. some decidable lang. has \(P \) & some """" does not have \(P \))

Exs \[\{ \langle M \rangle \mid M \text{ accepts exactly 374 strings} \}\]
undecidable by Rice

\[\{ \langle M \rangle \mid M \text{ runs in } \leq 100 \text{ steps} \}\]
Rice not applicable!

Other undecidable problems

a) \[\{ \langle G \rangle \mid L(G) = \Sigma^* \text{ for CFG } G \}\]

b) **Hilbert’s 10th Problem:**
b) Hilbert’s 10th Problem:
 does a polynomial eq’n has integer solns?
 \[x^7 + y^7 = z^7 + 3 \]

c) tiling

\[\begin{array}{c}
\includegraphics{image1} \\
\includegraphics{image2}
\end{array} \]