Midterm 2
Mon 7pm - 9pm
Covers everything after mid 1 to last wk cheat sheet

Min Spanning Tree (MST)

Given weighted undirected graph \(G = (V,E),\)
\(w: E \rightarrow \mathbb{R}_+\),
find a connected subgraph that includes all vertices minimizing total wt

![Diagram of a graph with nodes and weights](image)

one sol’n: \(5 + 9 + 7 + 28 = 49\)
better sol’n: \(5 + 7 + 2 + 21 = 35\) optimal

Appl. network design

Observe: The opt subgraph must be acyclic.

PDF Sketch: [Diagram of an undirected, acyclic, connected graph]
idea 0 - brute force \implies exponential
idea - greedy!

Kruskal's Alg'nm (1956): High-level version

1. \(T = \emptyset \)
2. repeat {
 pick next smallest-weight edge \(e \)
3. if \(T \cup \{ e \} \) doesn't contain a cycle
4. insert \(e \) to \(T \)
}

\textbf{Implementation: (detailed vers.)}

1. sort edges in increasing order of weight
2. create set \(\{ u \} \), \(u \in V \)

\(O(m \log n) \) time
2. Create set \(\{ u \} \), \(u \notin V \)
3. For each edge \(uv \) in sorted order
4. If \(u \) & \(v \) are in different sets
5. Output \(uv \) & union the two sets

Snapshot of T:

Lines 4-5: "union-find" data structure
- Union two disjoint sets: \(O(1) \) time
- Find set containing \(v \): \(O(\alpha(n)) \) time (amortized)
 \(\alpha(n) \ll \log \log \log \ldots \log n \)

\[\Rightarrow O(m\alpha(n)) \text{ time} \]

Total time \[O(m \log n) \]

Correctness Pf: (Assume wts are all distinct)

Key Lemma
Given any subset \(S \subseteq V \),
smallest-weight edge \(e \) between \(S \) & \(V-S \)
must be in the MST, \(T^* \).
Pf: By contradiction.
Suppose \(e \notin T^* \).
\(T^* \cup \{e\} \) contains a cycle \(C \).

\(C \) must contain another edge \(e' \) between \(S \) & \(V-S \).

\[
T^* \cup \{e\} - \{e'\} \text{ is a tree with weight } w(T^*) + w(e) - w(e') \leq w(T^*)
\]

because \(w(e) < w(e') \):
Contradiction! \(\square \)

Correctness Pf for Kruskal:
- each edge \(e = uv \) inserted to \(T \)
 is in MST \(T^* \) by Key Lemma.

each edge \(e = uv \) \(u \in S \) is in MST \(T^* \) by Key Lemma.

Prim's Alg'm (1957): High-level vers.

\[
S = \{s\}, \quad T = \emptyset
\]
while \(S \neq V \) do <

pick edge \(uv \) with \(\min \frac{w(uv)}{w(uv)} \) \(u \in S, \ v \in V-S \)

insert \(uv \) to \(T \)
insert \(v \) to \(S \)

}\)

Correctness Pf: by Key Lemma again!

\[
S = a
\]
\[
\Rightarrow \quad a \quad b
\]
like Dijkstra, can be implemented using Fibonacci heaps in $O(n \log n + m)$ time

Other Algs:

Boruvka (1926) $O(m \log n)$

Yao '75 $O(m \log \log n)$

Fredman, Tarjan '85 $O(m \log^* n)$

Grabow et al. '86 $O(m \log(\log^* n))$

Karger, Klein, Tarjan '94 $O(m)$ randomized

Chatelle '97 $O(m \alpha(n))$

OPEN $O(m)$ det.?