Applications of DFS

Topological Sort

Given dir graph $G = (V, E)$,
find a vertex ordering s.t.
$\forall (u, v) \in E \Rightarrow u$ appears before v

Given the directed acyclic graph (DAG):

```
a -> b -> c -> d -> e
```

$a \ c \ b \ e \ d$

Remark: if G has cycle, no solution exists
So assume G is acyclic (DAG)

First idea - find a source vertex u
- $\text{in-deg}(u) = 0$

Output u
Remove u & repeat

How to find a source?
- Run DFS All(G)
- Pick u = last vertex finished

Example:

```
a -> b -> c -> d -> e
```

```
a -> f -> g -> h -> i
```

```
a -> b -> c -> d -> e
```

```
a -> b -> c -> d
```

```
a -> b -> c -> d
```

```
a -> b -> c
```

```
a -> b
```

```
```
DFS trees

Correctness Pf (Sketch): By contradiction.

Final Alg:
1. run DFSALL(G)
2. Output vertices in reverse order of finish

⇒ \(O(m+n)\) time

Corollary
\(\exists\) topological sort \(\iff G\) is a DAG.

Strongly Connected Components
Given digraph $G = (V, E)$, partition V into components s.t.

- u, v in same component
 - \iff \exists path $u \leadsto v$
 - and \exists path $v \leadsto u$

Example:

- $\{i, j, e\}$, $\{a, b, c, d\}$, $\{g, h\}$, $\{f\}$, $\{k\}$

 (appl'n - control flow in programs, ...)
 (Simplifying digraphs into DAG)

- naive approaches
 - test reachability for every pair
 - by $O(n^2)$ BFS/DFS $\Rightarrow O(n(m + n))$ time
 - find cycles
 - contract, repeat

History: Purdom '68 $O(n^2)$ $O(m + n \log n)$
History: Purdom '68 $O(n)$
Munro '71 $O(m+n\log n)$
Tarjan '72 $O(m+n)$ complicated
Kosaraju '78 $O(m+n)$ simpler
Sharir '81

first idea - find a vertex u in some source component of meta-graph
- find u's component
- remove & repeat

how to find in a vertex in a source component?
- run DFSAll (G)
- pick $u =$ last vertex finished

e.g.
- DFS trees
- $a \rightarrow b \rightarrow c$
- $e \rightarrow d \rightarrow h \rightarrow g \rightarrow f$

Correctness Pf Sketch:
- all vertices v s.t. $v \sim u$
- by running DFS in reverse graph G^r from u
how to remove?
do nothing (no need to re-run the 2 DFSs)

Final Alg’m:
1. run DFSAll(G), label vertices by finish order
2. run DFSAll(G'), preferring larger labels when picking roots

Simple! $\implies \Theta(m+n)$ time

e.g. G'

a b c d e f a h f b c