Graphs: 2 Basic Algs

Breadth-First Search (BFS)
Depth-First Search (DFS)

Basic Problems
- find all vertices reachable from s
- find all connected components

Ex. trees

BFS

DFS

discovery order = pre-order

Extension to graphs

main diff: don’t revisit a vertex if we have seen it before!
no forward edges in BFS
for undir graphs, no cross edges in DFS

Implementation:

BFS(G,s):
 // idea 1: mark vertices when visited...
 // idea 2: use a data structure Q...
1. for each u ∈ V do unmark v
2. insert s to Q, mark s
3. while Q ≠ ∅ {
 4. remove a vertex u from Q
 5. for each out-neighbor v of u do {
 6. if v is unmarked
 insert v to Q. mark v,
6. \(n \rightarrow u \rightarrow \)
7. \(\text{insert } u \text{ to Q, mark } u, \text{ at tail } \)
 \(\text{parent}[u] = u, \text{ level}[u] = \text{level}(u) + 1 \)

Runtime: lines 5-7 \(O(\text{out-deg}(u)) \) time

+ total time \(O(n + \sum_{u\in V} \text{out-deg}(u)) \)

\(= \boxed{O(n + m)} \)

DFS(G,s):

// similar, but use a diff. data structure: stack, or recursion

1. mark \(s \), \(\text{discovered}[s] = \text{time} + \) \(\text{pre-numbering} \)
2. for each out-neighbor \(u \) of \(s \)
3. if \(u \) is unmarked
4. \(\text{DFS}(G,u), \text{parent}[u] = s \)
5. \(\text{finished}[s] = \text{time} + \) \(\text{post-numbering} \)

DFS-All(G):

0. for each \(v \in V \) do unmark \(v \)
1. for each \(v \in V \) do
2. if \(v \) is unmarked, \(\text{DFS}(G,v) \)

Runtime: \(O(n + m) \) again

Applications
Applications

Ex 1 Given dir/undir graph \(G = (V, E) \), \(s, t \in V \), find shortest path from \(s \) to \(t \)

1. run BFS\((G, s)\)
2. return path in BFS tree from \(s \) to \(t \)

Ex 2 Given undir graph \(G \), find all connected components

1. run BFS-ALL\((G)\) or DFS-ALL\((G)\)
2. return BFS/DFS trees as components

Ex 3 Given undir graph \(G \), decide whether \(G \) has a cycle

1. run BFS-ALL\((G)\) or DFS-ALL\((G)\)
2. check for non-tree edges

Ex 4 Given dir graph \(G \), decide whether \(G \) has a cycle

1. run DFS-ALL\((G)\)
2. check for back edges \((u, v) \in E\) (when \(\text{discovered}(u) \), \(\text{finished}(u) \))
Correctness:

\[\exists \text{ back edge} \Rightarrow \exists \text{ cycle} \]
\[\exists \text{ cycle} \Rightarrow \exists \text{ back edge:} \]

Hint: let \(u \) be first vertex discovered in cycle.
let \(u \) be vertex before \(u \) in cycle.

Ex 5 Topological Sort

Given dir. graph \(G=(V,E) \),
find a vertex ordering s.t.
\[\forall (u,v) \in E \Rightarrow u \text{ appears before } v \]

e.g.

\[\begin{array}{c}
\text{answer: } a, c, d, b \\
\end{array} \]

\[\begin{array}{c}
\text{no answer. (because } \exists \text{ cycle) } \\
\end{array} \]