CS 374: Algorithms & Models of Computation

Goal:
- Techniques to design algms
 - How to solve problems on computers (efficiently)
 - Need math defn/model of computation
 - Understand what problems can or can't be solved
 - Prove mathematically

Course Overview

I. Models of Computation
 - Finite automata \Leftrightarrow regular expr
 - Context-free grammars
 - Turing machines

II. Algorithms Design
 - Divide & conquer
 - Dynamic Programming
 - Greedy

III. Undecidability & NP-Completeness

Ex1: Given n numbers, can you find 3 summing exactly to 100?

(3SUM)

$\text{e.g. } 82, 43, 19, 96, 32, 74, 25$

Yes
brute force: $O(n^3)$ time
cleverer alg’m: $O(n^2)$
fastest alg’m: still open!
[current record: about $O\left(\frac{n^2}{\log^3 n}\right)$
by C.’17]

Ex2 Given n polygons & a box, can you pack them in box?

Ex3 Given n polygons, can you tile the entire plane?

no alg’m is possible!

PART I: MODELS OF COMPUTATION

Math Prelims

Strings
Strings

A string is a finite sequence of symbols from a finite set \(\Sigma \) called alphabet.

E.g. strings over \(\Sigma = \{0, 1\} \):
- 0110, 01, 0

Empty string is denoted \(\varepsilon \).
Let \(\Sigma^* = \{ \text{all strings over } \Sigma \} \).

Let \(x, y \) be strings.

a) length \(|x| \)
 - e.g. \(|01101| = 4, \quad |101| = 2, \quad |\varepsilon| = 0 \)

b) concatenation \(xy \)
 - e.g. \(x = 01, \ y = 101 \)
 \(\Rightarrow xy = 01101 \)
 \((xy)z = x(yz) \)
 \(|xy| = |x| + |y| \)
 \(\varepsilon x = x \varepsilon = x \)

c) \(i^{th} \) power \(x^i = x \ldots x \) \(i \) times
 - e.g. \((101)^3 = 101101101 \)
 \(x^0 = \varepsilon \)

d) \(x \) is a substring of \(y \) if \(y = wxz \) for some strings \(w, z \)
 (prefix if \(w = \varepsilon \), suffix if \(z = \varepsilon \))

e) other ops:
 \(x^R = \text{reverse of } x \).
\[x^R = \text{reverse of } x \]

(can be defined recursively:
\[
 x^R = \begin{cases}
 y^R a & \text{if } x = ay \ a \in \Sigma, y \in \Sigma^* \\
 \epsilon & \text{if } x = \epsilon
\end{cases}
\]

\[(xy)^R = y^Rx^R\]

Languages

A **language** is a set of strings (i.e. subset of \(\Sigma^* \))

\[\{ 0110, 01, 0 \}\] is a lang.
\[\{ x \in \{0,1\}^* \mid |x| \text{ is even} \}\]
\[\{ \text{all words in English dictionary} \} \text{ (over } \Sigma = \{',,.,!', 'z'\})\]

finite, boring
\[\{ \text{all syntactically valid Java programs} \}\]
more interesting
\[\{ \text{all prime numbers in binary} \}\]

(\text{decision problems can be encoded as languages})

Let \(L_1, L_2 \) be languages.

a) \(\text{union } L_1 \cup L_2 \)
\[\text{intersection } L_1 \cap L_2 \]
\[\text{complement } \bar{L}_1 = \Sigma^* \setminus L_1 \]
\[\text{difference } L_1 \setminus L_2 = L_1 \cap \bar{L}_2 \]
b) \[L_1 L_2 = \{ xy \mid x \in L_1, y \in L_2 \} \]

\[\text{e.g. } L_1 = \{0, 00\}, \quad L_2 = \{1, 01\} \]
\[\Rightarrow L_1 L_2 = \{01, 001, 0001\} \]

\[\text{e.g. } L_1 = \{0, 00, 000, \ldots\} \]
\[L_2 = \{1, 11, 111, \ldots\} \]
\[\Rightarrow L_1 L_2 = \{0^i 1^j \mid i, j \geq 1\} \]

c) \[i^{\text{th}} \text{ power } L^i = \underbrace{L \cdot \cdots \cdot L}_{i \text{ times}} \]

\[\text{e.g. } \{1, 01\}^2 = \{11, 101, 011, 0101\} \]
\[L^0 = \{\varepsilon\}. \]

d) \[\text{Kleene star } L^* = \bigcup_{i=0}^{\infty} L^i \]
\[= L^0 \cup L^1 \cup L^2 \cup \ldots \]

\[\text{e.g. } \{01\}^* = \{\varepsilon, 01, 0101, 010101, \ldots\} \]
\[\{0, 1\}^* \text{ as defined before} \]
\[\{1, 01\}^* = \{\varepsilon, 1, 01, 11, 101, 011, 0101, 111, 1101, \ldots\} \]
\[= \{x \in \{0, 1\}^* \mid x \text{ does not contain } 00 \text{ as a substring} \}
\[\text{and } x \text{ ends in } 1\} \]
There are countably many strings (but countably many Java programs)