Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time:

- **Input**: A CNF formula \(\varphi \) with \(n \) variables \(x_1, x_2, \ldots, x_n \).
- **Output**: True if there is an assignment of True or False to each variable that satisfies \(\varphi \).

Using this black box as a subroutine, describe an algorithm that solves the following related search problem in polynomial time:

- **Input**: A CNF formula \(\varphi \) with \(n \) variables \(x_1, \ldots, x_n \).
- **Output**: A truth assignment to the variables that satisfies \(\varphi \), or \textit{None} if there is no satisfying assignment.

(Hint: You can use the magic box more than once.)

2. An \textit{independent set} in a graph \(G \) is a subset \(S \) of the vertices of \(G \), such that no two vertices in \(S \) are connected by an edge in \(G \). Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time:

- **Input**: An undirected graph \(G \) and an integer \(k \).
- **Output**: True if \(G \) has an independent set of size \(k \), and False otherwise.

2.A. Using this black box as a subroutine, describe algorithms that solves the following optimization problem in polynomial time:

- **Input**: An undirected graph \(G \).
- **Output**: The size of the largest independent set in \(G \).

(Hint: You have seen this problem before.)

2.B. Using this black box as a subroutine, describe algorithms that solves the following search problem in polynomial time:

- **Input**: An undirected graph \(G \).
- **Output**: An independent set in \(G \) of maximum size.

To think about later:

3. Formally, a \textit{proper coloring} of a graph \(G = (V, E) \) is a function \(c: V \to \{1, 2, \ldots, k\} \), for some integer \(k \), such that \(c(u) \neq c(v) \) for all \(uv \in E \). Less formally, a valid coloring assigns each vertex of \(G \) a color, such that every edge in \(G \) has endpoints with different colors. The \textit{chromatic number} of a graph is the minimum number of colors in a proper coloring of \(G \).

Suppose you are given a magic black box that somehow answers the following decision problem in polynomial time:

- **Input**: An undirected graph \(G \) and an integer \(k \).
- **Output**: True if \(G \) has a proper coloring with \(k \) colors, and False otherwise.

Using this black box as a subroutine, describe an algorithm that solves the following \textit{coloring problem} in polynomial time:

- **Input**: An undirected graph \(G \).
- **Output**: A valid coloring of \(G \) using the minimum possible number of colors.

(Hint: You can use the magic box more than once. The input to the magic box is a graph and only a graph, meaning \textbf{only} vertices and edges.)