Dynamic programming problems can be solved using implicit memoization. Here, you are expected to solve the dynamic programming using explicit memoization (i.e., build the appropriate tables, and fill them in the right order, etc). In the exams, you would probably be asked to solve dynamic programming using explicit memoization. For homework 5 you can still use implicit memoization, but this would not be acceptable later in the course.

Lenny Rupenbar, the founding dean of the new Maximilian Q. Levcin College of Computer Science, has commissioned a series of snow ramps on the south slope of the Orchard Downs sledding hill\footnote{The north slope is faster, but too short for an interesting contest.} and challenged Bill Kudeki, head of the Department of Electrical and Computer Engineering, to a sledding contest. Bill and Lenny will both sled down the hill, each trying to maximize their air time. The winner gets to expand their department/college into both Siebel Center and the new ECE Building; the loser has to move their entire department/college under the Boneyard bridge next to Everitt Lab.

Whenever Lenny or Bill reaches a ramp \textit{while on the ground}, they can either use that ramp to jump through the air, possibly flying over one or more ramps, or sled past that ramp and stay on the ground. Obviously, if someone flies over a ramp, they cannot use that ramp to extend their jump.

1. Suppose you are given a pair of arrays $\text{Ramp}[1..n]$ and $\text{Length}[1..n]$, where $\text{Ramp}[i]$ is the distance from the top of the hill to the ith ramp, and $\text{Length}[i]$ is the distance that any sledder who takes the ith ramp will travel through the air.

 Describe and analyze an algorithm to determine the maximum total distance that Lenny or Bill can spend in the air.

2. Uh-oh. The university lawyers heard about Lenny and Bill’s little bet and immediately objected. To protect the university from either lawsuits or sky-rocketing insurance rates, they impose an upper bound on the number of jumps that either sledder can take.

 Describe and analyze an algorithm to determine the maximum total distance that Lenny or Bill can spend in the air \textit{with at most k jumps}, given the original arrays $\text{Ramp}[1..n]$ and $\text{Length}[1..n]$ and the integer k as input.

3. To think about later: When the lawyers realized that imposing their restriction didn’t immediately shut down the contest, they added a new restriction: No ramp can be used more than once! Disgusted by the legal interference, Lenny and Bill give up on their bet and decide to cooperate to put on a good show for the spectators.

 Describe and analyze an algorithm to determine the maximum total distance that Lenny and Bill can spend in the air, each taking at most k jumps (so at most $2k$ jumps total), and with each ramp used at most once.