A **subsequence** of a sequence (for example, an array, linked list, or string), obtained by removing zero or more elements and keeping the rest in the same sequence order. A subsequence is called a **substring** if its elements are contiguous in the original sequence. For example:

- **SUBSEQUENCE, UBSEQU**, and the empty string ε are all substrings (and therefore subsequences) of the string **SUBSEQUENCE**;
- **SBSQNC, SQUEE**, and **EEE** are all subsequences of **SUBSEQUENCE** but not substrings;
- **QUEUE, EQUUS**, and **DIMAGGIO** are not subsequences (and therefore not substrings) of **SUBSEQUENCE**.

Describe recursive backtracking algorithms for the following problems. *Don’t worry about running times.*

1. Given an array \(A[1..n]\) of integers, compute the length of a **longest increasing subsequence**. A sequence \(B[1..\ell]\) is increasing if \(B[i] > B[i-1]\) for every index \(i \geq 2\).

 For example, given the array

 \[3, 1, 4, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 7\]

 your algorithm should return the integer 6, because \(\langle 1, 4, 5, 6, 8, 9 \rangle\) is a longest increasing subsequence (one of many).

2. Given an array \(A[1..n]\) of integers, compute the length of a **longest decreasing subsequence**. A sequence \(B[1..\ell]\) is decreasing if \(B[i] < B[i-1]\) for every index \(i \geq 2\).

 For example, given the array

 \[3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 7\]

 your algorithm should return the integer 5, because \(\langle 9, 6, 5, 4, 2 \rangle\) is a longest decreasing subsequence (one of many).

3. Given an array \(A[1..n]\) of integers, compute the length of a **longest alternating subsequence**. A sequence \(B[1..\ell]\) is alternating if \(B[i] < B[i-1]\) for every even index \(i \geq 2\), and \(B[i] > B[i-1]\) for every odd index \(i \geq 3\).

 For example, given the array

 \[3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 7\]

 your algorithm should return the integer 17, because \(\langle 3, 1, 4, 1, 5, 2, 6, 5, 8, 7, 9, 3, 8, 4, 6, 2, 7 \rangle\) is a longest alternating subsequence (one of many).

To think about later:

4. Given an array \(A[1..n]\) of integers, compute the length of a longest **convex** subsequence of \(A\). A sequence \(B[1..\ell]\) is convex if \(B[i] - B[i-1] > B[i-1] - B[i-2]\) for every index \(i \geq 3\).

 For example, given the array

 \[3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 7\]

 your algorithm should return the integer 6, because \(\langle 3, 1, 1, 2, 5, 9 \rangle\) is a longest convex subsequence (one of many).
Given an array $A[1..n]$, compute the length of a longest palindrome subsequence of A. Recall that a sequence $B[1..\ell]$ is a palindrome if $B[i] = B[\ell - i + 1]$ for every index i.

For example, given the array

$$(3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 7)$$

your algorithm should return the integer 7, because $(4, 9, 5, 3, 5, 9, 4)$ is a longest palindrome subsequence (one of many).