Designing DFAs via product construction and designing NFAs.

1 Describe a DFA that accepts the following language over the alphabet $\Sigma = \{0, 1\}$.
 All strings in which the number of 0s is even and the number of 1s is not divisible by 3.

2 All strings that are both the binary representation of an integer divisible by 3 and the ternary (base-3) representation of an integer divisible by 4.
 For example, the string 1100 is an element of this language, because it represents $2^3 + 2^2 = 12$ in binary and $3^3 + 3^2 = 36$ in ternary.

3 Design an NFA for the language $(01)^+ + (010)^+$.

Work on these later:
Describe deterministic finite-state automata that accept each of the following languages over the alphabet $\Sigma = \{0, 1\}$. You may find it easier to describe these DFAs formally than to draw pictures.

4 All strings w such that $\left\lceil \frac{|w|}{2} \right\rceil \mod 6 = 4$. (Hint: Maintain both $\left\lceil \frac{|w|}{2} \right\rceil \mod 6$ and $|w| \mod 6$.)

5 (Hard.) All strings w such that $F_{\#(10,w)} \mod 10 = 4$, where $\#(10,w)$ denotes the number of times 10 appears as a substring of w, and F_n is the nth Fibonacci number:

$$F_n = \begin{cases}
0 & \text{if } n = 0 \\
1 & \text{if } n = 1 \\
F_{n-1} + F_{n-2} & \text{otherwise}
\end{cases}$$