HW 12

CS/ECE 374: Algorithms & Models of Computation, Spring 2019 2.71828182845904 Version:

This homework is ${f not}$ for submission – it is only for exercise for the final. No solution would be provided.

34 Recall that w^R denotes the reversal of string w; for example, $TURING^R = GNIRUT$. Prove that the following language is undecidable.

 $\operatorname{RevACCEPT} := \left\{ \langle M \rangle \mid M \text{ accepts } \langle M \rangle^R \right\}$

Note that Rices theorem does *not* apply to this language.

- **35** Let M be a Turing machine, let w be an arbitrary input string, and let s be an integer. We say that M accepts w in space s if, given w as input, M accesses only the first s (or fewer) cells on its tape and eventually accepts.
 - **35.A.** Sketch a Turing machine/algorithm that correctly decides the following language:

$$\left\{ \langle M, w \rangle \mid M \text{ accepts } w \text{ in space } |w|^2 \right\}$$

35.B. Prove that the following language is undecidable:

 $\left\{ \langle M \rangle \mid M \text{ accepts at least one string } w \text{ in space } |w|^2 \right\}$

- **36** Consider the language SOMETIMESHALT = $\{\langle M \rangle \mid M \text{ halts on at least one input string}\}$. Note that $\langle M \rangle \in \text{SOMETIMESHALT}$ does not imply that M accepts any strings; it is enough that M halts on (and possibly rejects) some string.
 - **36.A.** Prove that SOMETIMESHALT is undecidable.
 - **36.B.** Sketch a Turing machine/algorithm that *accepts* SOMETIMESHALT.
- **37** For each of the following languages, either prove that the language is decidable, or prove that the language is undecidable.

37.A. $L_0 = \{ \langle M \rangle \mid \text{given any input string}, M \text{ eventually leaves its start state} \}$

37.B. $L_1 = \{ \langle M \rangle \mid M \text{ decides } L_0 \}$

- **37.C.** $L_2 = \{ \langle M \rangle \mid M \text{ decides } L_1 \}$
- **37.D.** $L_3 = \{ \langle M \rangle \mid M \text{ decides } L_2 \}$
- **37.E.** $L_4 = \{ \langle M \rangle \mid M \text{ decides } L_3 \}$