34 Recall that \(w^R \) denotes the reversal of string \(w \); for example, \(TURING^R = GNIRUT \). Prove that the following language is undecidable.

\[
\text{RevAccept} := \{ \langle M \rangle \mid M \text{ accepts } \langle M \rangle^R \}
\]

Note that Rice's theorem does not apply to this language.

35 Let \(M \) be a Turing machine, let \(w \) be an arbitrary input string, and let \(s \) be an integer. We say that \(M \) accepts \(w \) in space \(s \) if, given \(w \) as input, \(M \) accesses only the first \(s \) (or fewer) cells on its tape and eventually accepts.

35.A. Sketch a Turing machine/algorithm that correctly decides the following language:

\[
\{ \langle M, w \rangle \mid M \text{ accepts } w \text{ in space } |w|^2 \}
\]

35.B. Prove that the following language is undecidable:

\[
\{ \langle M \rangle \mid M \text{ accepts at least one string } w \text{ in space } |w|^2 \}
\]

36 Consider the language \(\text{SometimesHalt} = \{ \langle M \rangle \mid M \text{ halts on at least one input string} \} \). Note that \(\langle M \rangle \in \text{SometimesHalt} \) does not imply that \(M \) accepts any strings; it is enough that \(M \) halts on (and possibly rejects) some string.

36.A. Prove that \(\text{SometimesHalt} \) is undecidable.

36.B. Sketch a Turing machine/algorithm that accepts \(\text{SometimesHalt} \).

37 For each of the following languages, either prove that the language is decidable, or prove that the language is undecidable.

37.A. \(L_0 = \{ \langle M \rangle \mid \text{given any input string, } M \text{ eventually leaves its start state} \} \)

37.B. \(L_1 = \{ \langle M \rangle \mid M \text{ decides } L_0 \} \)

37.C. \(L_2 = \{ \langle M \rangle \mid M \text{ decides } L_1 \} \)

37.D. \(L_3 = \{ \langle M \rangle \mid M \text{ decides } L_2 \} \)

37.E. \(L_4 = \{ \langle M \rangle \mid M \text{ decides } L_3 \} \)