28 (100 pts.) Network deployment.

Consider an undirected connected graph G that represents a map. Every vertex is a location, and every edge represents a road that connects the two locations, with the positive weight of the edge being the distance between the two locations. Let $d(x, y)$ denote the shortest path distance between any two vertices $x, y \in V(G)$. We have a set $X \subseteq V(G)$ of locations we would like to connect together via a common network. Computing the optimal such network is surprisingly difficult, but one can build a reasonably good network.

A natural strategy for deploying/building such a network is as follows – order the vertices of X in some order v_1, v_2, \ldots, v_t, where $t = |X|$. In the ith step of the deployment, we install a server at v_i. Let u_i be the closest server among v_1, \ldots, v_{i-1} to v_i. We connect v_i to u_i (paying $d(v_i, u_i)$), and continue to the next location. The cost of the deployment is $\sum_{i=2}^{n} d(v_i, u_i)$.

28.A. (20 pts.) Consider the graph $G = (\{1, 2, \ldots, n\}, \{12, 23, \ldots, (n-1)n\})$, where the weight of all edges is 1. Show, that there is an ordering over the vertices of G such that the deployment cost of $X = V(G)$ is $\Omega(n \log n)$.

28.B. (20 pts.) Let T be the cheapest tree, such that $X \subseteq V(T)$. Verify that the cost of the tree $w(T) = \sum_{e \in T} w(e)$ is a lower bound on the deployment cost of X for any ordering. Prove that there exists a closed walk that visits all the vertices of X, and the total weight of the edges of the walk is at most $2w(T)$.

28.C. (20 pts.) Let x, y be the closest pair of vertices in X. Formally, it is one of the pairs realizing $\min_{u \in X} \min_{v \in X \setminus \{u\}} d(u, v)$. Prove, using the above, that $d(x, y) \leq 2w(T)/|X|$,.

28.D. (40 pts.) Consider the greedy algorithm that computes the closest pair of vertices $x, y \in X$, sets $v_1 = x$, and then recursively computes the ordering for $X \setminus \{x\}$. Let Π be the resulting ordering of X. Prove that the deployment cost of X is bounded by $O(w(T) \log n)$.

(Clearly, this algorithm can be implemented in polynomial time – but the exact running time here is unimportant.)

29 (100 pts.) Few spies.

Let $G = (C \cup S, E)$ be a graph with n vertices and m edges. The vertices of $C \cup S$ represents citizens in the glorious democratic republic of north Narnia (GDRNN). An edge between two people indicates that they are friends. The vertices of S represents people that are willing to spy on their friends to see if they do any illegal activities (like enjoying themselves, etc). The government of GDRNN would like to choose a set of spies $S' \subseteq S$, of minimum size, such that every citizen in C is connected to some vertex of S' (the members of S are trusted by the government – so no need to spy on them). Computing the smallest such set is surprisingly difficult. Again, we are going to be happy with a simple greedy strategy\(^1\).

\(^1\)Seeing the movie “The lives of others” might not help you solve this problem, but you might enjoy it anyway.
Let \(C_0 = C \) and \(S_0 = \emptyset \). In the \(i \)th iteration, for \(i > 0 \), we pick the vertex \(s_i \) in \(S \) that is connected to the largest number of citizens in \(C_{i-1} \) (resolving ties arbitrarily). We then set \(S_i = S_{i-1} \cup \{s_i\} \), and \(C_i = C_{i-1} \setminus \Gamma(s_i) \), where \(\Gamma(s_i) \) is the set of citizens connected to \(s_i \). We stop as soon as \(C_i \) is empty, and output \(S_i \) as the desired set of spies.

29.A. (20 pts.) Assume that the optimal solution is of size \(k \). Prove, that for any \(i \), \(s_i \) is connected to at least \(|C_{i-1}|/k \) citizens (hint: think about the \(k \) optimal spies \(o_1, \ldots, o_k \)).

29.B. (20 pts.) Prove that \(|C_i| \leq (1 - 1/k)|C_{i-1}| \).

29.C. (20 pts.) Using that \((1 - 1/k)^k \leq 1/e \), prove that for all \(i \), we have that \(|C_{i+k}| \leq |C_i|/e \).

29.D. (40 pts.) Prove, that the above algorithm outputs a set of at most \(k(\lceil \ln n \rceil + 1) \) spies, such that all the citizens of \(C \) are spied on by these spies.

30. (100 pts.) **OLD Homework problem (not for submission):** Undecidable.

For each of the following languages, either prove that it is undecidable (by providing a detailed reduction from a known undecidable language), or describe an algorithm that decides this language – your description of the algorithm should be detailed and self-contained. (Note, that you cannot use Rice Theorem in solving this problem.)

30.A. (25 pts.) \(L_1 = \{ \langle M, N \rangle \mid L(M) = \overline{L(N)} \}, \) where \(M \) is a Turing machine, and \(N \) is a NFA.

30.B. (25 pts.) \(L_2 = \{ \langle N \rangle \mid L(N) \text{ is infinite} \}, \) where \(N \) is an NFA.

30.C. (25 pts.) \(L_3 = \{ \langle R, N \rangle \mid L(R) = L(N) \}, \) where \(R \) is a regular expression, and \(N \) is an NFA.

30.D. (25 pts.) \(L_4 = \{ \langle M \rangle \mid L(M) \text{ contains some word with an even length} \}, \) where \(M \) is a Turing machine.