
HW 10 Due on Wednesday, November 25, 2020 at 10am

CS/ECE 374: Algorithms & Models of Computation, Fall 2020 Version: 1.1

Submission instructions as in previous homeworks.

28 (100 pts.) OLD Homework problem (not for submission):
Network deployment.

Consider an undirected connected graph G that represents a map. Every vertex is a location,
and every edge represents a road that connects the two locations, with the positive weight of the
edge being the distance between the two locations. Let d(x, y) denote the shortest path distance
between any two vertices x, y ∈ V(G). We have a set X ⊆ V(G) of locations we would like
to connect together via a common connected network. Computing the optimal such network is
surprisingly difficult, but one can build a reasonably good network.

A natural strategy for deploying/building such a network is as follows – order the vertices of
X in some order v1, v2, . . . , vt, where t = |X|. In the ith step of the deployment, we install a server
at vi. Let ui be the closest server among v1, . . . , vi−1 to vi. We connect vi to ui (paying d(vi, ui)),
and continue to the next location. The cost of the deployment is

∑n
i=2 d(vi, ui).

28.A. (20 pts.) Consider the graph G = ({1, 2, . . . , n} , {12, 23, . . . (n− 1)n}), where the weight of
all edges is 1. Show, that there is an ordering over the vertices of G such that the deployment
cost of X = V(G) is Ω(n log n).

28.B. (20 pts.) Let T be the cheapest tree, such that X ⊆ V(T). Verify that the cost of the tree
w(T) =

∑
e∈Tw(e) is a lower bound on the deployment cost of X for any ordering.

Prove that there exists a closed walk that visits all the vertices of X, and the total weight of
the edges of the walk is at most 2w(T).

28.C. (20 pts.) Let x, y be the closest pair of vertices in X. Formally, it is one of the pairs realizing
minu∈X minv∈X\{u} d(u, v). Prove, using the above, that d(x, y) ≤ 2w(T)/ |X|,

28.D. (40 pts.) Consider the greedy algorithm that computes the closest pair of vertices x, y ∈ X,
sets vt = x, and then recursively computes the ordering for X \ {x}. Let Π be the resulting
ordering of X. Prove that the deployment cost of X is bounded by O(w(T) log n).
(Clearly, this algorithm can be implemented in polynomial time – but the exact running time
here is unimportant.)

29 (100 pts.) OLD Homework problem (not for submission):
Few spies.

Let G = (C ∪ S,E) be a graph with n vertices and m edges. The vertices of C ∪ S represents
citizens in the glorious democratic republic of north Narnia (GDRNN). An edge between two people
indicates that they are friends. The vertices of S represents people that are willing to spy on their
friends to see if they do any illegal activities (like enjoying themselves, etc). The government of
GDRNN would like to choose a set of spies S ′ ⊆ S, of minimum size, such that every citizen in C
is connected to some vertex of S ′ (the members of S are trusted by the government – so no need
to spy on them). Computing the smallest such set is surprisingly difficult. Again, we are going to
be happy with a simple greedy strategy1.

1Seeing the movie “The lives of others” might not help you solve this problem, but you might enjoy it anyway.

1

https://courses.engr.illinois.edu/cs374/fa2019/hw/hw_01.pdf

Let C0 = C and S0 = ∅. In the ith iteration, for i > 0, we pick the vertex si in S that
is connected to the largest number of citizens in Ci−1 (resolving ties arbitrarily). We then set
Si = Si−1 ∪ {si}, and Ci = Ci−1 \ Γ(si), where Γ(si) is the set of citizens connected to si. We stop
as soon as Ci is empty, and output Si as the desired set of spies.

29.A. (20 pts.) Assume that the optimal solution is of size k. Prove, that for any i, si is connected
to at least |Ci−1| /k citizens in Ci−1 (hint: think about the k optimal spies o1, . . . , ok).

29.B. (20 pts.) Prove that |Ci| ≤ (1− 1/k) |Ci−1|.
29.C. (20 pts.) Using that (1− 1/k)k ≤ 1/e, prove that for all i, we have that |Ci+k| ≤ |Ci| /e.
29.D. (40 pts.) Prove, that the above algorithm outputs a set of at most k(dlnne+ 1) spies, such

that all the citizens of C are spied on by these spies.

30 (100 pts.) OLD Homework problem (not for submission):
Undecidable, that’s what you are.

For each of the following languages, either prove that it is undecidable (by providing a detailed
reduction from a known undecidable language), or describe an algorithm that decides this language
– your description of the algorithm should be detailed and self contained. (Note, that you cannot
use Rice Theorem in solving this problem.)

30.A. (25 pts.) L1 = {〈M,N〉 | L(M) = L(N), where M is a Turing machine, and N is a NFA} .
30.B. (25 pts.) L2 = {〈N〉 | L(N) is infinite, where N is an NFA} .
30.C. (25 pts.) L3 = {〈R,N〉 | L(R) = L(N), where R is a regular expression, and N is an NFA} .
30.D. (25 pts.)

L4 = {〈M〉 | L(M) contains some word of even length, where M is a Turing machine} .

2

