
HW 8 Due on Wednesday, November 4, 2020 at 10am

CS/ECE 374: Algorithms & Models of Computation, Fall 2020 Version: 1.33

Submission instructions as in previous homeworks.

22 (100 pts.) OLD Homework problem (not for submission):
Graph Morphing

In the following, let G be a graph with n vertices and m edges.

22.A. (20 pts.) Given an undirected graph G, and two vertices s, t ∈ V(G), describe a linear time
algorithm that directs each edge of G so that the resulting directed graph is a DAG, s is a
source of this DAG, and t is a sink.

22.B. (10 pts.) For a connected undirected graph G, a bridge is an edge that its removal discon-
nects the graph. Using DFS describe a linear time algorithm that decides if a bridge exists,
and if so it outputs it.

22.C. (20 pts.) Prove that for an undirected connected graph G with n vertices and m edges, the
edges can be directed so that the resulting graph is strongly connected =⇒ there are no
bridges in G. (The claim holds with ⇐⇒ . This is the easier direction.)

22.D. (50 pts.) Given an undirected connected graph G that has no bridges, describe how to
modify the DFS algorithm so that it outputs an orientation of the edges of G so that the
resulting graph is strongly connected. Prove the correctness of your algorithm.

23 (100 pts.) OLD Homework problem (not for submission):
Robot motion planning.

Consider the following puzzle. You are given a red and blue robots and an n × n grid – the
robots are initially located in two prespecified grid cells. Some grid cells are walls (and marked as
such). One cell is marked as the target.

In each turn, one of the robots has to move from its current position as far as possible upward,
downward, right, or left, stopping just before either (i) hitting the outer wall of the grid, (ii) the
other robot, or (iii) an obstacle. The task is get one of the robots to the target cell. Here is an
example of an input, and a valid solution (which is not unique in this case):

R

B

B

R

B

R

R B RB B
R

input step 1 step 2 step 3 step 4 step 5

23.A. (30 pts.) You are given as input n, a list of obstacle locations, the target, and the initial
locations of the robots. Describe and analyze an efficient algorithm to determine the minimum
number of steps required to reach the target if possible.

In the monotone variant of the problem, one can choose the initial positions of the robots.
In each step, one of the robots is being moved. One of the robots can move only right or down,
and the other robot can move only up or left. As before a robot must stop just before hitting
something.

1

https://courses.engr.illinois.edu/cs374/fa2017/hw/hw_00.pdf


23.B. (30 pts.) Monotone variant longest path.
You are given as input n, a list of obstacle locations, and a target cell. Describe and analyze
an algorithm to determine the initial locations of the robots that would maximize the number
of turns required to reach the target (for the monotone variant). You can assume there is
a solution for one of the possible initial configurations. The running time of your algorithm
should be polynomial in n.

23.C. (40 pts.) Monotone variant longest stuck.
You are given as input n, a list of obstacle locations, and a target cell. Describe and analyze
an algorithm to determine the initial locations of the robots that would maximize the number
of turns before either a robot reaches the target, or both robots get stuck (the running time
of your algorithm should be polynomial in n).

24 (100 pts.) OLD Homework problem (not for submission):
Run DAG run!

Suppose we are given a DAG G with n vertices and m edges. The vertices represent jobs and
whose edges represent precedence constraints. That is, each edge (u, v) indicates that job u must
be completed before job v begins. Each node v also has a weight T (v) indicating the time required
to execute job v.

a

b

c

d

f

e

g

j

h

10s

12s

24s

a
b

c
d

e
f

2s

6s

8s

h16s

9s

j

g

7s

0 52s

Execution order

Time

For all the following questions, you can assume that you have as many processors as you want
(that work independently in parallel).

24.A. (30 pts.) Describe an algorithm to determine the shortest interval of time in which all jobs
in G can be executed.

24.B. (40 pts.) Suppose the first job starts at time 0. Describe an algorithm to determine, for
each vertex v, the earliest time when job v can begin.

24.C. (30 pts.) Now describe an algorithm to determine, for each vertex v, the latest time when job
v can begin without violating the precedence constraints or increasing the overall completion
time (computed in part (A)), assuming that every job that has precedence on v starts at its
earliest start time (i.e., computed in part (B)).

2


