
HW 6: Extra problems Instructor: Timothy M. Chan, Haitham Hassanieh, and Sariel
Har-Peled.

CS/ECE 374: Algorithms & Models of Computation, Spring 2019 Version: 1.0

No solutions for the following problems will NOT be provided but you can discuss them on Piazza.

1 Given an array of n unsorted integers A and k ranks i1 < i2 < . . . < ik describe an algorithm
that outputs the elements in A with these given k ranks. Your algorithm should run in O(n log k)
time. One can easily do this via sorting in O(n log n) time. There is also an O(nk) time algorithm
(how?).

2 Problems in Jeff’s notes on dynamic programming. In particular, Probs 1, 2, 3, 5, 6.

3 Problems in Dasgupta etal book Chapter 6. In particular Probs 1, 2

4 Problems in Kleinberg-Tardos book Chapter 6. Problems 1, 2, 7.

5 Let w ∈ Σ∗ be a string. We say that u1, u2, . . . , uh where each ui ∈ Σ∗ is a valid split of w iff
w = u1u2 . . . uh (the concatenation of u1, u2, . . . , uh). Given a valid split u1, u2, . . . , uh of w we
define its `3 measure as

∑h
i=1 |ui|3.

Given a language L ⊆ Σ∗ a string w ∈ L∗ iff there is a valid split u1, u2, . . . , uh of w such that
each ui ∈ L; we call such a split an L-valid split of w. Assume you have access to a subroutine
IsStringInL(x) which outputs whether the input string x is in L or not. To evaluate the running
time of your solution you can assume that each call to IsStringInL() takes constant time.
Describe an efficient algorithm that given a string w and access to a language L via IsStringInL(x)
outputs an L-valid split of w with minimum `3 measure if one exists.

6 Recall that a palindrome is any string that is exactly the same as its reversal, like I, or DEED,
or RACECAR, or AMANAPLANACATACANALPANAMA.
Any string can be decomposed into a sequence of palindrome substrings. For example, the string
BUBBASEESABANANA (“Bubba sees a banana.”) can be broken into palindromes in the
following ways (among many others):

BUB • BASEESAB • ANANA

B • U • BB • A • SEES • ABA • NAN • A

B • U • BB • A • SEES • A • B • ANANA

B • U • B • B • A • S • E • E • S • A • B • ANA • N • A

Describe and analyze an efficient algorithm that given a string w and an integer k decides whether
w can be split into palindromes each of which is of length at least k. For example, given the input
string BUBBASEESABANANA and 3 your algorithm would answer yes because one can find
a split BUB • BASEESAB • ANANA. The answer should be no if we set k = 4. Note that the
answer is always yes for k = 1.

7 The McKing chain wants to open several restaurants along Red street in Shampoo-Banana. The
possible locations are at L1, L2, . . . , Ln where Li is at distance mi meters from the start of Red

1

street. Assume that the street is a straight line and the locations are in increasing order of
distance from the starting point (thus 0 ≤ m1 < m2 < . . . < mn). McKing has collected some
data indicating that opening a restaurant at location Li will yield a profit of pi independent of
where the other restaurants are located. However, the city of Shampoo-Banana has a zoning
law which requires that any two McKing locations should be D or more meters apart. Describe
an algorithm that McKing can use to figure out the maximum profit it can obtain by opening
restaurants while satisfying the city’s zoning law.

Solved Problem
8 A shuffle of two strings X and Y is formed by interspersing the characters into a new string, keeping

the characters of X and Y in the same order. For example, the string BANANAANANAS is a
shuffle of the strings BANANA and ANANAS in several different ways.

BANANAANANAS BANANAANANAS BANANAANANAS

Similarly, the strings PRODGY RNAMAMMIINCG and DY PRONGARMAMMICING are
both shuffles of DYNAMIC and PROGRAMMING:

PRODGY RNAMAMMIINCG DY PRONGARMAMMICING

Given three strings A[1 ..m], B[1 .. n], and C[1 ..m + n], describe and analyze an algorithm to
determine whether C is a shuffle of A and B.

Solution:
We define a boolean function Shuf(i, j), which is True if and only if the prefix C[1 .. i+ j] is a
shuffle of the prefixes A[1 .. i] and B[1 .. j]. This function satisfies the following recurrence:

Shuf(i, j) =

True if i = j = 0

Shuf(0, j − 1) ∧ (B[j] = C[j]) if i = 0 and j > 0

Shuf(i− 1, 0) ∧ (A[i] = C[i]) if i > 0 and j = 0(
Shuf(i− 1, j) ∧ (A[i] = C[i+ j])

)
∨
(
Shuf(i, j − 1) ∧ (B[j] = C[i+ j])

)
if i > 0 and j > 0

We need to compute Shuf(m,n).
We can memoize all function values into a two-dimensional array Shuf[0 ..m][0 .. n]. Each array
entry Shuf[i, j] depends only on the entries immediately below and immediately to the right:
Shuf[i − 1, j] and Shuf[i, j − 1]. Thus, we can fill the array in standard row-major order. The
original recurrence gives us the following pseudocode:

Shuffle?(A[1 ..m], B[1 .. n], C[1 ..m+ n]):
Shuf[0, 0]← True
for j ← 1 to n

Shuf[0, j]← Shuf[0, j − 1] ∧ (B[j] = C[j])

for i← 1 to n
Shuf[i, 0]← Shuf[i− 1, 0] ∧ (A[i] = B[i])

for j ← 1 to n
Shuf[i, j]← False
if A[i] = C[i+ j]

Shuf[i, j]← Shuf[i, j] ∨ Shuf[i− 1, j]
if B[i] = C[i+ j]

Shuf[i, j]← Shuf[i, j] ∨ Shuf[i, j − 1]

return Shuf[m,n]

2

The algorithm runs in O(mn) time.

Rubric: Max 10 points: Standard dynamic programming rubric. No proofs required. Max 7 points
for a slower polynomial-time algorithm; scale partial credit accordingly.

Rubric:Standard dynamic programming rubric For problems worth 10 poins:

• 6 points for a correct recurrence, described either using mathematical notation or as pseudocode
for a recursive algorithm.

+ 1 point for a clear English description of the function you are trying to evaluate. (Other-
wise, we don’t even know what you are trying to do.) Automatic zero if the English
description is missing.

+ 1 point for stating how to call your function to get the final answer.
+ 1 point for base case(s). −1/2 for one minor bug, like a typo or an off-by-one error.
+ 3 points for recursive case(s). −1 for each minor bug, like a typo or an off-by-one error. No

credit for the rest of the problem if the recursive case(s) are incorrect.

• 4 points for details of the dynamic programming algorithm

+ 1 point for describing the memoization data structure
+ 2 points for describing a correct evaluation order; a clear picture is usually sufficient. If you

use nested loops, be sure to specify the nesting order.
+ 1 point for time analysis

• It is not necessary to state a space bound.

• For problems that ask for an algorithm that computes an optimal structure—such as a subset,
partition, subsequence, or tree—an algorithm that computes only the value or cost of the optimal
structure is sufficient for full credit, unless the problem says otherwise.

• Official solutions usually include pseudocode for the final iterative dynamic programming algo-
rithm, but iterative psuedocode is not required for full credit. If your solution includes
iterative pseudocode, you do not need to separately describe the recurrence, memoization struc-
ture, or evaluation order. (But you still need to describe the underlying recursive function in
English.)

• Official solutions will provide target time bounds. Algorithms that are faster than this target are
worth more points; slower algorithms are worth fewer points, typically by 2 or 3 points (out of 10)
for each factor of n. Partial credit is scaled to the new maximum score, and all points above 10
are recorded as extra credit.

We rarely include these target time bounds in the actual questions, because when we have
included them, significantly more students turned in algorithms that meet the target time bound
but did not work (earning 0/10) instead of correct algorithms that are slower than the target time
bound (earning 8/10).

3

